0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

降低工业和汽车应用中陶瓷电容器的电源要求

星星科技指导员 来源:嵌入式计算设计 作者:Zhongming Ye 2022-06-06 09:53 次阅读

随着汽车、工业、数据中心和电信行业使用的电源数量的增加,多层陶瓷电容器MLCC) 的价格在过去几年中急剧上涨。陶瓷电容器用于电源的输出端以降低输出纹波,并控制由于高压摆率负载瞬变导致的输出电压过冲和下冲。由于其低 ESR 和低 ESL 在高频下,输入侧需要陶瓷电容器用于去耦和过滤 EMI。

为了提高工业和汽车系统的性能,需要将数据处理速度提高几个数量级,越来越多的耗电设备挤入微处理器CPU、片上系统 (SoC)、ASICFPGA 。 这些复杂设备类型中的每一种都需要许多稳压电压轨:通常,内核为 0.8 V,DDR3 和 LPDDR4 分别为 1.2 V 和 1.1 V,外围和辅助组件分别为 5 V、3.3 V 和 1.8 V。降压(降压)转换器广泛用于从电池或直流总线产生稳压电源

例如,汽车中高级驾驶辅助系统 (ADAS) 的普及显着提高了陶瓷电容器的使用率。随着 5G 技术在需要高性能电源的电信领域的兴起,陶瓷电容器的使用量也将显着增加。内核电源电流从几安培增加到几十安培,对电源纹波、负载瞬态过冲/下冲和电磁干扰 (EMI) 的控制非常严格——这些特性需要额外的电容。

在很多情况下,传统的供电方式跟不上变化的步伐。整体方案尺寸太大,效率太低,电路设计太复杂,物料清单(BOM)成本太高。例如,为了满足快速负载瞬变的严格电压调节规范,输出端需要大量陶瓷电容器来存储和提供负载瞬变产生的大量电流。输出陶瓷电容的总成本可以达到功率IC的数倍。

较高的电源工作(开关)频率可以降低瞬态对输出电压的影响,并降低电容要求和整体解决方案尺寸,但较高的开关频率通常会导致开关损耗增加,从而降低整体效率。是否有可能避免这种折衷并满足高级微处理器、CPU、SoC、ASIC 和 FPGA 要求的极高电流水平的瞬态要求?为了考虑这个问题,让我们看一下 SoC 的 20 V 输入到 1 V 输出 15 A 的情况。

15 A 从 20 V 输入

图 1 显示了用于 SoC 和 CPU 电源应用的 1 MHz、1.0 V、15 A 架构,其中输入通常为 12 V 或 5 V,可以在 3.1 V 至 20 V 之间变化。只有输入和输出电容器、电感器和几个小电阻和电容是完成电源所必需的。该电路可以轻松修改以产生其他输出电压,例如 1.8 V、1.1 V 和 0.85 V,低至 0.6 V。输出轨的负返回(到 V– 引脚)可实现对输出的远程反馈感应电压接近负载,最大限度地减少由跨板走线电压降引起的反馈误差。

图 1 所示的方法使用具有高性能集成 MOSFET 的稳压器。这个特殊的稳压器是一个LTC7151S单片降压稳压器,它使用 Silent Switcher 2 架构来简化 EMI 滤波器设计。采用 28 引线、耐热增强型 4 mm × 5 mm × 0.74 mm LQFN 封装。通过谷值电流模式进行控制并降低输出电容要求。内置保护功能,最大限度地减少外部保护元件的数量。

顶部开关的最短导通时间仅为 20 ns(典型值),可在非常高的频率下直接降压至内核电压。热管理功能可在高达 20 V 的输入电压下提供高达 15 A 的可靠且持续的电流,无需散热器或气流,使其成为电信、工业、运输和汽车领域 SOC、FPGA、DSPGPU 和微处理器的热门选择应用程序。凭借宽输入范围,该稳压器可用作第一级中间转换器,在 5 V 或 3.3 V 时支持高达 15 A 的电流到多个下游负载点或 LDO 稳压器。

poYBAGKdXkGATEQiAAFhEqmKgQk556.png

图 1. 用于 SoC 和 CPU 的 1 MHz、15 A 降压稳压器的原理图和效率。

以最小的输出电容满足严格的瞬态规范

通常,输出电容会按比例调整以满足环路稳定性和负载瞬态响应的要求。这些规范对于为处理器内核电压提供服务的电源尤其严格,其中负载瞬态过冲和下冲必须得到很好的控制。例如,在负载阶跃期间,输出电容器必须介入,立即提供电流以支持负载,直到反馈回路使开关电流上升到足以接管。通常,通过在输出侧安装大量多层陶瓷电容器来抑制过冲和下冲,从而满足快速负载瞬态期间的电荷存储要求。

此外,提高开关频率可以提高快速环路响应,但代价是开关损耗增加。

还有第三种选择:具有谷值电流模式控制的稳压器可以动态改变稳压器的开关 TON 和 TOFF 时间,几乎可以瞬间满足负载瞬态的需求。这允许显着降低输出电容以满足快速响应时间。图 2 显示了 LTC7151S Silent Switcher 稳压器以 8 A/µs 压摆率立即响应从 4 A 到 12 A 的负载阶跃的结果。LTC7151S 的受控导通时间 (COT) 谷值电流模式架构允许开关节点脉冲在 4 A 至 12 A 负载阶跃转换期间压缩。上升沿开始后约 1 µs,输出电压开始恢复,过冲和下冲限制为 46 mV 峰峰值。图 2a 所示的三个 100 µF 陶瓷电容器足以满足典型的瞬态规格,如图 2b 所示。

poYBAGKdXk2AS2a8AAIWBSklNNM752.png

图 2. (a) 这个 5 V 输入到 1 V 输出的应用以 2 MHz 运行,需要最小的输出电容来快速、干净地对 (b) 负载阶跃以及 (c) 负载阶跃期间的开关波形作出反应。

3 MHz 的高效降压适用于狭窄空间

使用高度集成的稳压器可使 MOSFET、驱动器和热回路电容器保持闭合。这减少了寄生效应,并允许以非常窄的死区时间快速打开/关闭开关。开关的反并联二极管的导通损耗大大降低。集成的热回路去耦电容器和内置补偿电路还消除了设计复杂性,最大限度地减小了总体解决方案尺寸。

如前所述,顶部开关的 20 ns(典型值)最小值允许在高频下实现非常低的占空比转换,使设计人员能够利用非常高的频率(例如 3 MHz)来减小尺寸和值电感、输入电容和输出电容。极其紧凑的解决方案可用于空间有限的应用,例如汽车和医疗应用中的便携式设备或仪器。使用 LTC7151S 时,无需使用风扇和散热器等体积庞大的热缓解组件,这要归功于它的高性能功率转换,即使在非常高的频率下也是如此。

图 3 显示了在 3 MHz 开关频率下工作的 5 V 至 1 V 解决方案。伊顿的小尺寸 100 nH 电感器与三个 100 µF/1210 陶瓷电容器一起为 FPGA 和微处理器应用提供了一个非常薄的紧凑型解决方案。效率曲线如图 3b 所示。满载时室温温升约为15°C。

poYBAGKdXlOANh4iAAGwyMgf3ds534.png

图 3. f SW = 3 MHz时 5 V 输入至 1 V/15 A 的原理图和效率。

提高 EMI 性能

满足已发布的 EMI 规范,例如 CISPR 22/CISPR 32 传导和辐射 EMI 峰值限制,15 A 应用可能意味着多次迭代电路板旋转,涉及解决方案尺寸、总效率、可靠性和复杂性的众多权衡。传统方法通过减慢开关边沿和/或降低开关频率来控制 EMI。两者都有不良影响,例如降低效率、增加最小开关时间以及更大的解决方案尺寸。强力 EMI 缓解措施,例如复杂而笨重的 EMI 滤波器或金属屏蔽,在所需的电路板空间、组件和组装方面增加了大量成本,同时使热管理和测试复杂化。

可以通过多种方式降低 EMI,包括集成热回路电容器,以最大限度地减少噪声天线尺寸。LTC7151S 通过结合高性能 MOSFET 和驱动器来保持低 EMI,这使得 IC 设计人员能够生产出具有内置最小化开关节点振铃的器件。结果是,即使在开关边沿具有高压摆率时,存储在热环路中的相关能量也受到高度控制,从而实现出色的 EMI 性能,同时最大限度地降低高工作频率下的交流开关损耗。

LTC7151S 已经在 EMI 测试室中进行了测试,并通过了 CISPR 22/CISPR 32 传导和辐射 EMI 峰值限制,并且前面带有一个简单的 EMI 滤波器。图 4 显示了 1 MHz、1.2 V/15 A 电路的示意图,图 5 显示了千兆赫横向电磁 (GTEM) 单元中的辐射 EMI CISPR 22 测试结果。

pYYBAGKdXluAetN9AAIcWd6C2LY859.png

图 5. GTEM 中的辐射 EMI 超过 CISPR 22 B 类限制。

工业和汽车环境中智能电子、自动化和传感器的普及推动了对电源的数量和性能要求。尤其是低 EMI,随着对小解决方案尺寸、高效率、热效率、稳健性和易用性的通常要求,作为关键电源参数考虑因素的优先级越来越高。借助集成稳压器,开发人员可以在非常紧凑的情况下满足严格的 EMI 要求。借助谷值电流模式控制和高频操作,稳压器可以动态改变 TON 和 TOFF 时间,以几乎瞬时地主动支持负载瞬态,从而实现更小的输出电容和快速响应。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2525

    文章

    48129

    浏览量

    740198
  • 稳压器
    +关注

    关注

    24

    文章

    4089

    浏览量

    92041
  • emi
    emi
    +关注

    关注

    53

    文章

    3447

    浏览量

    125517
收藏 人收藏

    评论

    相关推荐

    为什么电容器放电电阻器现在被强制要求作为基本安全装置

    在电子产品电容器放电电阻器或泄放电阻器是与高压电源电路的输出并联的电阻器,其明确目的是释放存储在电源滤波电容器
    发表于 03-08 08:44

    陶瓷电容器是如何分类的,它们的优势是什么?

    我是电子元件的初学者,我对很多这方面的知识都很陌生。当我读到电容器时,我不太明白有哪些类型以及它们是如何分类的。 陶瓷电容器与其他由不同材料制成的电容器相比有什么优势?
    发表于 03-01 07:25

    太阳诱电 | 陶瓷电容器的静电容量相关

    造成的,也是所有陶瓷电容的常有现象。 以下是本公司产品MSASL219SB5105KTNA01相对于温度的静电容量变化率。 陶瓷电容器的温度
    的头像 发表于 01-10 04:28 147次阅读
    太阳诱电 | <b class='flag-5'>陶瓷</b><b class='flag-5'>电容器</b>的静<b class='flag-5'>电容</b>量相关

    陶瓷电容器和钽电容器介绍

    陶瓷电容器和钽电容器介绍
    的头像 发表于 12-13 15:45 246次阅读
    <b class='flag-5'>陶瓷</b><b class='flag-5'>电容器</b>和钽<b class='flag-5'>电容器</b>介绍

    村田的引线型多层陶瓷电容器有哪些特点?

    村田的引线型多层陶瓷电容器有哪些特点?
    的头像 发表于 12-05 17:31 331次阅读
    村田的引线型多层<b class='flag-5'>陶瓷</b><b class='flag-5'>电容器</b>有哪些特点?

    村田的引线型多层陶瓷电容器有哪些特点?本文总结全了

    村田的引线型多层陶瓷电容器有哪些特点?本文总结全了
    的头像 发表于 12-05 17:21 261次阅读
    村田的引线型多层<b class='flag-5'>陶瓷</b><b class='flag-5'>电容器</b>有哪些特点?本文总结全了

    陶瓷电容器的规格书能够信任吗?

    陶瓷电容器的规格书能够信任吗?
    的头像 发表于 11-28 16:20 307次阅读
    <b class='flag-5'>陶瓷</b><b class='flag-5'>电容器</b>的规格书能够信任吗?

    如何降低超级电容器的内阻?

    如何降低超级电容器的内阻?  超级电容器是一种高能量密度、高功率密度和长寿命的电子元件,其内阻的大小直接关系到其使用寿命和性能的稳定性。因此,如何降低超级
    的头像 发表于 09-28 16:36 1701次阅读

    电容器的入门学习教程

    本文档的主要内容详细介绍的是电容器的入门学习教程动漫说明包括了:电容器的起源与历史,电容器是什么,电容器的基本性质,在电路
    发表于 09-26 06:14

    在转换器中使用多层陶瓷电容器的优势

    在转换器中使用多层陶瓷电容器的优势  随着科技的发展和进步,人们对电能的需求越来越大。电力转换器作为一个重要的电子设备,在各行各业都有着广泛使用,其主要功能是将一种电源转换为另一种电源
    的头像 发表于 09-18 11:48 299次阅读

    贴片电容陶瓷电容吗?

    ,广泛应用于计算机、手机、通讯设备、汽车电子等领域。 贴片电容陶瓷电容的一种形式。与传统的电容器不同,贴片
    的头像 发表于 09-12 16:03 744次阅读

    如何降低电容器的运行温度

    由于电流的流动和电子设备的长时间使用,电容器会产生热量并导致温度升高。高温不仅会影响电容器的性能,还可能缩短其寿命。因此,降低电容器运行温度是非常重要的。那么,常见的有效
    的头像 发表于 08-31 15:20 687次阅读

    为什么同一种电容器要叫陶瓷电容和瓷介电容

    陶瓷电容和瓷片电容其实就是同一种电容器,瓷片电容陶瓷电容
    的头像 发表于 07-24 18:26 805次阅读

    陶瓷电容的纹波电流参数,纹波电流怎么选陶瓷电容

    在这篇文章中,我将以降压转换器为例来演示如何选择陶瓷电容器以满足纹波电流要求。(请注意,铝电解电容器或钽电容器等大容量
    的头像 发表于 07-19 10:30 3192次阅读
    <b class='flag-5'>陶瓷</b><b class='flag-5'>电容</b>的纹波电流参数,纹波电流怎么选<b class='flag-5'>陶瓷</b><b class='flag-5'>电容</b>好

    如何选购陶瓷电容陶瓷电容选型要求

    进行包封形成的外形为圆片形的陶瓷电容。为了让大家选择合适的陶瓷电容器,本文将对选购陶瓷电容的方法
    的头像 发表于 07-19 10:23 892次阅读