0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

应用材料公司全新系统可改进晶体管布线沉积工艺

半导体芯科技SiSC 来源:半导体芯科技SiSC 作者:半导体芯科技SiS 2022-06-02 15:50 次阅读

加利福尼亚州圣克拉拉——应用材料公司宣布推出一种全新系统,可改进晶体管布线沉积工艺,从而大幅降低电阻,突破了芯片在性能提升和功率降低两方面所面临的重大瓶颈。

Endura® Ioniq™ PVD系统是应用材料公司在解决二维微缩布线电阻难题方面所取得的最新突破。Ioniq系统是一种集成材料解决方案™(IMS™),可将表面制备、PVD和CVD工艺同时集中到同一个高真空系统中。

芯片制造商正在利用光刻领域的先进技术将芯片制程缩小至3纳米及以下节点。但随着互连线变细,电阻呈现指数级上升,这不仅降低了芯片性能,还增大了功耗。如果该问题无法得到解决,更为先进的晶体管带来的益处将被指数级上升的布线电阻完全抵消。

芯片布线一般指沉积金属在介电材料上被刻蚀出的沟槽和通孔内的过程。在传统工艺中,布线沉积使用的金属叠层通常由以下几部分构成:阻挡层用于防止金属与介电材料扩散;衬垫层用于提升粘附力;种子层用于促进金属填充;以及导电金属,例如钨或钴用于晶体管触点,铜用于互连线。因为阻挡层和衬垫层很难微缩,所以当沟槽和通孔尺寸减小时,可用于导电材料的空间比例随之降低——互连线越小,电阻越高。

应用材料公司Endura® Ioniq™ PVD系统

Ioniq PVD system是一种集成材料解决方案™(IMS™),可将表面制备、PVD和CVD工艺同时集中到同一个高真空系统中。Ioniq PVD给芯片制造商提供了用低阻值的纯钨PVD膜取代高阻值的氮化钛衬垫层和阻挡层的方案,配合后续的纯钨CVD膜制成纯钨的金属触点。该方案解决了电阻难题,让二维微缩得以继续作用于3纳米及以下节点。

应用材料公司半导体产品事业部高级副总裁兼总经理珀拉布∙拉贾博士表示:“应用材料公司在解决电阻难题方面所取得的最新突破,是一个材料工程创新使得二维微缩得以延续的绝佳范例。创新的Ioniq PVD系统打破了晶体管性能提升所面临的一个重大瓶颈,使其在运行速度更快的同时降低了功率损失。随着芯片复杂度的提升,在高真空中集成多个工艺的能力对于客户改进布线以达到其性能和功率的目标来说至关重要。”

Endura Ioniq PVD系统现已被全球多家行业领先的客户使用。如需了解更多有关该系统的信息或者其它用于解决关键布线和互连难题的应用材料公司解决方案,请关注应用材料公司在美国时间5月26日举办的“芯片布线和集成的新方法”大师课。

关于应用材料公司

应用材料公司(纳斯达克:AMAT)是材料工程解决方案的领导者,全球几乎每一个新生产的芯片和先进显示器的背后都有应用材料公司的身影。凭借在规模生产的条件下可以在原子级层面改变材料的技术,我们助力客户实现可能。应用材料公司坚信,我们的创新实现更美好的未来。欲知详情,请访问www.appliedmaterials.com。

近期会议

2022年7月5日,由ACT雅时国际商讯主办,《半导体芯科技》&CHIP China晶芯研讨会将在苏州·洲际酒店隆重举行!届时业内专家将齐聚苏州,与您共探半导体制造业,如何促进先进制造与封装技术的协同发展。大会现已启动预约登记,报名请点击://w.lwc.cn/s/maymIv

2022年7月28日 The12th CHIP China Webinar,诚邀您与业内专家学者共探半导体器件检测面临的挑战及应对、工艺缺陷故障、光学检测特性分析与挑战、先进封装半导体检测难点及应用等热门话题,解锁现代检测技术的创新发展和机遇!

关于我们

《半导体芯科技》(Silicon Semiconductor China, SiSC)是面向中国半导体行业的专业媒体,已获得全球知名杂志《Silicon Semiconductor》的独家授权;本刊针对中国半导体市场特点遴选相关优秀文章翻译,并汇集编辑征稿、国内外半导体行业新闻、深度分析和权威评论、产品聚焦等多方面内容。由雅时国际商讯(ACT International)以简体中文出版、双月刊发行一年6期。每期纸质书12,235册,电子书发行15,749,内容覆盖半导体制造工艺技术、封装、设备、材料、测试、MEMSIC设计、制造等。每年主办线上/线下 CHIP China晶芯研讨会,搭建业界技术的有效交流平台。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体管
    +关注

    关注

    76

    文章

    9056

    浏览量

    135222
  • PVD
    PVD
    +关注

    关注

    4

    文章

    47

    浏览量

    16834
  • 应用材料公司

    关注

    0

    文章

    56

    浏览量

    16816
收藏 人收藏

    评论

    相关推荐

    晶体管掺杂和导电离子问题原因分析

    双极性晶体管是利用两种离子导电,空穴和自由电子,但是对于一个实际存在的系统,其整体上是呈现电中性的,当其中的电子或者空穴移动形成电流时,与之对应的空穴或者电子为什么不会一起随着移动? 这个问题困扰
    发表于 02-21 21:39

    晶体管Ⅴbe扩散现象是什么?

    晶体管并联时,当需要非常大的电流时,可以将几个晶体管并联使用。因为存在VBE扩散现象,有必要在每一个晶体管的发射极上串联一个小电阻。电阻R用以保证流过每个晶体管的电流近似相同。电阻值R
    发表于 01-26 23:07

    在特殊类型晶体管的时候如何分析?

    管子多用于集成放大电路中的电流源电路。 请问对于这种多发射极或多集电极的晶体管时候该如何分析?按照我的理解,在含有多发射极或多集电极的晶体管电路时,如果多发射极或多集电极的每一极分别接到独立的电源回路中
    发表于 01-21 13:47

    单结晶体管的工作原理是什么?

    常用的半导体元件还有利用一个PN结构成的具有负阻特性的器件一单结晶体管,请问这个单结晶体管是什么?能够实现负阻特性?
    发表于 01-21 13:25

    晶体管和场效应的本质问题理解

    晶体管也就是俗称三极,其本质是一个电流放大器,通过基射极电流控制集射极电流。 1、当基射极电流很小可以忽略不计时,此时晶体管基本没有对基射极电流的放大作用,此时可以认为晶体管处在关断
    发表于 01-18 16:34

    双极晶体管工艺流程介绍

    衬底:NPN双极晶体管的基础是p掺杂(硼)硅衬底,上面沉积了厚氧化层(600 nm)。
    的头像 发表于 12-06 18:15 1756次阅读
    双极<b class='flag-5'>晶体管工艺</b>流程介绍

    如何选择分立晶体管

    来至网友的提问:如何选择分立晶体管
    发表于 11-24 08:16

    晶体管 - 改变世界的发明

    晶体管
    油泼辣子
    发布于 :2023年11月18日 12:13:27

    晶体管详细介绍

    专业图书47-《新概念模拟电路》t-I晶体管
    发表于 09-28 08:04

    不同类型的晶体管及其功能

    调节电流或电压的设备,充当电子信号的按钮或门。 ​ 编辑 添加图片注释,不超过 140 字(可选) 晶体管的类型 晶体管由三层半导体器件组成,每层都能够移动电流。半导体是一种以“半热敏”方式导电的材料
    发表于 08-02 12:26

    晶体管做电子开关

    晶体管
    YS YYDS
    发布于 :2023年07月04日 20:45:13

    浅析芯片沉积工艺

    在了解芯片沉积工艺之前,先要阐述下薄膜(thin film)的概念。薄膜材料是厚度介于单原子到几毫米间的薄金属或有机物层。
    的头像 发表于 06-08 11:00 2433次阅读
    浅析芯片<b class='flag-5'>沉积</b><b class='flag-5'>工艺</b>

    晶体管的结构特点和伏安特性

    今天为大家介绍晶体管由两个PN结构成,分为NPN型和PNP型两类,根据使用材料的不同,将晶体管分为NPN型锗管和NPN型硅管,PNP型锗管和PNP型硅管。
    的头像 发表于 06-03 09:29 1460次阅读
    <b class='flag-5'>晶体管</b>的结构特点和伏安特性

    基于PVD 薄膜沉积工艺

    PVD篇 PVD是通过溅射或蒸发靶材材料来产生金属蒸汽,然后将金属蒸汽冷凝在晶圆表面上的过程。应用材料公司在 PVD 技术开发方面拥有 25 年以上的丰富经验,是这一领域无可争议的市场领导者
    的头像 发表于 05-26 16:36 2013次阅读

    晶体管电容电路设计!#晶体管 #电容 #电路 #电子#硬声创作季

    晶体管
    也许吧
    发布于 :2023年05月18日 09:30:18