0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NVIDIA DLI教授如何构建异常检测的人工智能应用

星星科技指导员 来源:NVIDIA 作者:Josh Wyatt 2022-04-14 11:44 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

NVIDIA 深度学习学院( DLI )正在为如何构建异常检测的人工智能应用提供指导者、动手训练。

异常检测是识别数据集中异常偏离的数据的过程。与识别统计异常值的简单过程不同,异常检测旨在发现在其上下文中不应被视为正常的数据。

异常可以包括与捕获和标记的异常相似的数据、在不同上下文中可能正常但不在其出现的上下文中的数据,以及只能通过训练神经网络的洞察理解为异常的数据。

在许多商业和研究环境中,异常检测是一种强大而重要的工具。医疗保健专业人员使用异常检测更早更有效地识别人类疾病的迹象。 IT 和 DevOps 团队针对任何数量的业务应用异常检测来识别可能导致性能下降或服务丢失的事件。营销和财务团队利用异常检测来识别对其 KPI 有重大影响的特定事件。

简言之,任何团队都可以从与他们的目标相关的数据中识别特殊情况中获益,这可能会从异常检测的有效使用中获益。

异常检测方法

考虑到异常检测的各种重要应用,有许多方法可用于执行异常检测,这并不奇怪。确定哪种方法对给定场景最有效的一个有用因素是,是否已经存在指示哪些样本异常的标记数据。当可以定义异常并且存在足够的代表性数据时,可以使用监督学习方法。或者,在没有此类标记数据的情况下,可能需要无监督的方法,但仍然需要检测新的异常。

DLI workshop 人工智能在异常检测方面的应用包括监督和非监督情况。利用 KDD 网络入侵数据集,采用监督 XGBoost 模型检测异常网络流量。此外,该模型经过训练,不仅可以将尚未发现的异常数据分类为攻击的一部分,还可以识别攻击的种类。

对于无监督学习方法,考虑了两种方法,首先是训练深度自编码神经网络。接着介绍了一种双网络生成对抗网络( GAN ),其中分量鉴别器网络执行异常检测。下面是每种方法的更多细节。

XGBoost 详细信息

XGBoost 是一种优化的梯度增强算法,具有广泛的应用。除了广泛的实际使用案例外, XGBoost 还凭借其在 Kaggle 数据科学竞赛中广泛而有效的表现赢得了良好的声誉。鉴于存在用于训练的标记数据,异常检测问题被认为是一个分类问题,其中经过训练的 XGBoost 模型识别出保持测试数据中的异常。 NVIDIA GPU 通过并行化训练来加速 XGBoost ,首先作为二进制分类器,然后作为识别异常类型的多类分类器。

AE 详细信息

深度自动编码器由两个对称部分组成。第一部分称为编码器,将数据压缩或“编码”为低维潜在表示。第二部分,解码器,尝试从编码器产生的潜在向量重构原始输入。在训练期间,编码器和解码器都进行了优化,以创建输入数据的潜在表示,从而更好地捕获其基本方面。当用低异常率进行训练时,潜在向量比异常更能代表丰富的正常数据样本。因此,解码器的输出将比异常更可靠地重建正常数据。通过自动编码器传递正常数据将产生比异常更低的重建误差,通过设置该误差的阈值来完成分类。

GAN 细节

生成性对抗网络由两个相互竞争以提高整体性能的神经网络组成。其中一个网络,生成器,学习获取一个随机种子,并从与训练集数据相同的分布中生成一个人工数据样本。第二个网络,鉴别器,学习区分来自训练数据集的样本和生成器生成的样本。

当正确地训练时,生成器将学习提供逼真的人工数据样本,而鉴别器可以准确地识别训练集中出现的数据。当使用代表非正常数据的数据进行训练时,生成器能够创建类似正常数据的新样本,鉴别器能够将样本分类为正常样本。

最典型的是, GAN 的训练目标是使用生成器生成新的、逼真的数据样本,同时丢弃鉴别器。然而,对于异常检测,将生成器放在一边,利用鉴别器确定未知输入数据是正常的还是异常的。

了解更多

工智能驱动的异常检测提供了丰富的,有时是跨广泛领域的基本功能。此外,适用于异常检测的技术也可以在其他人工智能领域发挥巨大作用。

关于作者

Josh Wyatt 是一位经验丰富的软件工程师、讲师和课程开发人员,为NVIDIA 深度学习学院开发内容。 Josh 帮助培训了全世界数千名开发人员、研究人员和数据科学家,在加速计算、数据科学和深度学习领域构建 GPU 加速应用程序。乔希拥有加州圣玛丽学院哲学学士学位。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49743

    浏览量

    261582
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123912
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    的框架小 10 倍,速度也快 10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍这对开发人员意味着什么,以及使用 Neuton 模型如何改进您的开发和终端
    发表于 08-31 20:54

    Lambda采用Supermicro NVIDIA Blackwell GPU服务器集群构建人工智能工厂

    大批量 Supermicro GPU 优化服务器(包括基于 NVIDIA Blackwell 的系统),以扩展其人工智能基础设施并向客户交付高性能计算系统。此次合作于今年 6 月率先在俄亥俄州哥伦布市的 Cologix COL4 ScalelogixSM 数据中心启动,为
    的头像 发表于 08-30 16:55 625次阅读

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    的深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入学习人工智能技术的人来说
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    的深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入学习人工智能技术的人来说
    发表于 08-07 14:23

    关于人工智能处理器的11个误解

    应用,以及哪些是真实情况而哪些只是炒作,仍存在诸多误解。GPU是最佳的人工智能处理器尽管GPU在人工智能的实现过程中发挥了关键作用,而且如今它们的应用也极为广泛,但将其推
    的头像 发表于 08-07 13:21 879次阅读
    关于<b class='flag-5'>人工智能</b>处理器的11个误解

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能
    发表于 07-14 11:23

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统

    算法进行异常检测,并结合LightGBM作为主分类器,构建完整的欺诈检测系统。文章详细阐述了从无监督异常
    的头像 发表于 06-24 11:40 1202次阅读
    机器学习<b class='flag-5'>异常</b><b class='flag-5'>检测</b>实战:用Isolation Forest快速<b class='flag-5'>构建</b>无标签<b class='flag-5'>异常</b><b class='flag-5'>检测</b>系统

    如何构建边缘人工智能基础设施

    随着人工智能的不断发展,其争议性也越来越大;而在企业和消费者的眼中,人工智能价值显著。如同许多新兴科技一样,目前人工智能的应用主要聚焦于大规模、基础设施密集且高功耗的领域。然而,随着人工智能
    的头像 发表于 06-09 09:48 855次阅读

    开售RK3576 高性能人工智能主板

    ,HDMI-4K 输出,支 持千兆以太网,WiFi,USB 扩展/重力感应/RS232/RS485/IO 扩展/I2C 扩展/MIPI 摄像头/红外遥控 器等功能,丰富的接口,一个全新八核拥有超强性能的人工智能
    发表于 04-23 10:55

    Cognizant将与NVIDIA合作部署神经人工智能平台,加速企业人工智能应用

    -Cognizant将与NVIDIA合作部署神经人工智能平台,加速企业人工智能应用 Cognizant将在关键增长领域提供解决方案,包括企业级AI智能体、定制化行业大型语言模型及搭载
    的头像 发表于 03-26 14:42 578次阅读
    Cognizant将与<b class='flag-5'>NVIDIA</b>合作部署神经<b class='flag-5'>人工智能</b>平台,加速企业<b class='flag-5'>人工智能</b>应用

    人工智能大模型年度发展趋势报告

    2024年12月的中央经济工作会议明确把开展“人工智能+”行动作为2025年要抓好的重点任务。当前,以大模型为代表的人工智能正快速演进,激发全球科技之变、产业之变、时代之变,人工智能发展迎来新高潮。随着大模型推理、多模
    的头像 发表于 02-13 10:57 1518次阅读
    <b class='flag-5'>人工智能</b>大模型年度发展趋势报告

    NVIDIA CES 2025汽车行业回顾

    NVIDIA 中国推出的人工智能类音频节目再次开讲啦,在这里,你将与 NVIDIA 共同见证人工智能的磅礴力量与无限可能!
    的头像 发表于 01-21 09:59 830次阅读

    Embarcadero:人工智能驱动发展我们的期望是什么

    发展的方向。 这是一张在simplified.com上,通过提示“屏幕上有人工智能的笔记本电脑”而生成的人工智能图像。这一实现令人印象深刻,但同样任重道远。图像和电影比文本更难处理。难度超过代码了吗? 当今的人工智能 在远程服务
    的头像 发表于 01-15 10:46 646次阅读

    人工智能推理及神经处理的未来

    、个性化和效率的社会需求,又进一步推动了人工智能技术的集成。此外,不断发展的监管体系,则强调了合乎伦理道德的人工智能、数据隐私和算法透明度的重要性,进而指导人工
    的头像 发表于 12-23 11:18 871次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来