0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

实用深度学习AI在汽车中的应用

电子设计 来源:电子设计 作者:电子设计 2022-01-12 14:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

作者:德州仪器Joe Folkens

在未来的某个时候,人们必定能够相对自如地运用人工智能,安全地驾车出行。这个时刻何时到来我无法预见;但我相信,彼时“智能”会显现出更“切实”的意义。

与此同时,通过深度学习方法,人工智能的实际应用能够在汽车安全系统的发展进步中发挥重要的作用。而这些系统远不止仅供典型消费者群体掌握和使用。

深度学习这一概念在几十年前就已提出,但如今它与特定的应用程序、技术以及通用计算平台上的可用性能更密切相关。深度学习的“深度”层面源于输入层和输出层之间实现的隐含层数目,隐含层利用数学方法处理(筛选/卷积)各层之间的数据,从而得出最终结果。在视觉系统中,深度(vs.宽度)网络倾向于利用已识别的特征,通过构建更深的网络最终来实现更通用的识别。这些多层的优点是各种抽象层次的学习特征。

例如,若训练深度卷积神经网络(CNN)来对图像进行分类,则第一层学习识别边缘等最基本的东西。下一层学习识别成形的边缘的集合。后续图层学习识别诸如眼或鼻这样的形状的集合,而最后一层将学习甚至更高阶(如面部)的特征。多层更擅长进行归纳,因为它们可以学习原始数据和高级分类之间的所有中间特征。如图1所示,这种跨越多层的归纳对于最终用例是有利的,如对交通标志进行分类,或者尽管存在墨镜、帽子和/或其他类型的障碍物,也可能识别特定面部。

pYYBAGGKV0CACM-LAASlFTqytO4433.png

图1:简易交通标志示例

深度学习的“学习”层面源于对分层网络如何在给定大量已知输入及其期望输出的情况下产生更准确结果(图2)所需的训练(反向传播)的迭代。这种学习减少了那些迭代产生的错误,并最终获得分层函数的结果,以满足整体系统需求,并为目标应用程序提供极其稳健的解决方案。这种学习/分层/互连类型类似于生物神经系统,因此支持人工智能的概念。

pYYBAGGKV0OAPb47AAJ1stoXE-0403.png

图2:简易反向传播示例

尽管深度学习具有效力,但其在实际应用中也遇到了一些挑战。对于容易受到系统限制因素(如总体成本、功耗和扩展计算能力)影响的嵌入式应用程序而言,在设计支持深度学习功能的系统时必须考虑这些限制因素。开发人员可以使用前端工具,如Caffe(最初由加州大学伯克利分校开发的深度学习框架)或TensorFlow(谷歌的发明)来开发总网络、层和相应的功能,以及目标最终结果的培训和验证。完成此操作后,针对嵌入式处理器的工具可将前端工具的输出转换为可在该嵌入式器件上或该嵌入式器件中执行的软件。

TI深度学习(TIDL)框架(图3)支持在TI TDAx汽车处理器上运行的深度学习/基于CNN的应用程序,以在高效的嵌入式平台上提供极具吸引力的高级驾驶辅助系统(ADAS)功能。

TIDL框架为软件可扩展性提供快速嵌入式开发和平台抽象;在TI硬件上实现用于加速CNN的高度优化的内核,以及支持从开放框架(如Caffe和TensorFlow)到使用TIDL应用程序编程界面的嵌入式框架进行网络转换的转换器

有关此解决方案的更多详细信息,请阅读白皮书“TIDL:嵌入式低功耗深度学习,” 并查看其它资源中的视频。

审核编辑:何安

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 汽车
    +关注

    关注

    15

    文章

    4043

    浏览量

    40606
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「AI芯片:科技探索与AGI愿景」阅读体验】+第二章 实现深度学习AI芯片的创新方法与架构

    、Transformer 模型的后继者 二、用创新方法实现深度学习AI芯片 1、基于开源RISC-V的AI加速器 RISC-V是一种开源、模块化的指令集架构(ISA)。优势如下: ①模
    发表于 09-12 17:30

    【「AI芯片:科技探索与AGI愿景」阅读体验】+内容总览

    ,其中第一章是概论,主要介绍大模型浪潮下AI芯片的需求与挑战。第二章和第三章分别介绍实现深度学习AI芯片的创新方法和架构。以及一些新型的算法和思路。第四章是全面介绍半导体芯产业的前沿技
    发表于 09-05 15:10

    AI 芯片浪潮下,职场晋升新契机?

    运算能力,是其深度学习训练环节发挥优势的关键,相关工作成果对证明专业能力极为重要。 若投身于 FPGA 芯片研发,鉴于 FPGA 可重构、灵活性高以及特定运算中高效的特性,
    发表于 08-19 08:58

    自动驾驶Transformer大模型会取代深度学习吗?

    持续讨论。特别是自动驾驶领域,部分厂商开始尝试将多模态大模型(MLLM)引入到感知、规划与决策系统,引发了“传统深度学习是否已过时”的激烈争论。然而,从技术原理、算力成本、安全需求与实际落地路径等维度来看,Transforme
    的头像 发表于 08-13 09:15 3912次阅读
    自动驾驶<b class='flag-5'>中</b>Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    任正非说 AI已经确定是第四次工业革命 那么如何从容地加入进来呢?

    芯片、更高效的深度学习算法等。通过与参会的专家学者和企业代表交流,可以拓宽视野,寻找合作机会。 加入AI行业协会或者专业社群。在这些组织,可以分享自己的见解和经验,也能从他人那里获取
    发表于 07-08 17:44

    Nordic收购 Neuton.AI 关于产品技术的分析

    与 Nordic 的 nRF54 系列超低功耗无线 SoC 结合,使得即使是资源极为有限的设备也能高效运行边缘 AI。Nordic 目前正在将 Neuton 深度集成到自身开发生态,未来会提供更多工具、固件
    发表于 06-28 14:18

    【「零基础开发AI Agent」阅读体验】+ 入门篇学习

    很高兴又有机会学习ai技术,这次试读的是「零基础开发AI Agent」,作者叶涛、管锴、张心雨。 大模型的普及是近三年来的一件大事,万物皆可大模型已成为趋势。作为大模型开发应用重要组
    发表于 05-02 09:26

    行业首创:基于深度学习视觉平台的AI驱动轮胎检测自动化

    全球领先的轮胎制造商 NEXEN TIRE 在其轮胎生产检测过程中使用了基于友思特伙伴Neurocle开发的AI深度学习视觉平台,实现缺陷检测率高达99.96%,是该行业首个使用AI
    的头像 发表于 03-19 16:51 781次阅读
    行业首创:基于<b class='flag-5'>深度</b><b class='flag-5'>学习</b>视觉平台的<b class='flag-5'>AI</b>驱动轮胎检测自动化

    数据采集AI行业的应用分析

    人工智能(AI)作为21世纪最具革命性的技术之一,正在深刻改变各行各业。AI的核心驱动力是数据,而数据采集则是AI发展的基石。无论是机器学习深度
    的头像 发表于 03-07 14:30 731次阅读

    AI Agent 应用与项目实战》----- 学习如何开发视频应用

    学习、自然语言处理(NLP)、计算机视觉(CV)等先进技术提供的强大的数据处理和分析能力。 视频应用开发AI Agent可以用于视频内容分析、推荐、编辑等。 下面跟随作者的指导,
    发表于 03-05 19:52

    军事应用深度学习的挑战与机遇

    ,并广泛介绍了深度学习两个主要军事应用领域的应用:情报行动和自主平台。最后,讨论了相关的威胁、机遇、技术和实际困难。主要发现是,人工智能技术并非无所不能,需要谨慎应用,同时考虑到其局限性、网络安全威胁以及
    的头像 发表于 02-14 11:15 818次阅读

    吉利汽车与DeepSeek深度融合,引领智能汽车AI新纪元

    DeepSeek共同推动AI科技智能汽车领域的革新与普及。 此次合作,吉利将DeepSeek R1大模型的顶尖认知能力融入其智能汽车全域AI
    的头像 发表于 02-08 10:47 1145次阅读

    AI自动化生产:深度学习质量控制的应用

    生产效率、保证产品质量方面展现出非凡的能力。阿丘科技「AI干货补给站」推出《AI自动化生产:深度学习质量控制
    的头像 发表于 01-17 16:35 1209次阅读
    <b class='flag-5'>AI</b>自动化生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>在</b>质量控制<b class='flag-5'>中</b>的应用

    FPGAAI方面有哪些应用

    提供了强有力的支持。 一、FPGA 深度学习的应用 深度学习
    的头像 发表于 01-06 17:37 2087次阅读

    深度学习工作负载GPU与LPU的主要差异

    ,一个新的竞争力量——LPU(Language Processing Unit,语言处理单元)已悄然登场,LPU专注于解决自然语言处理(NLP)任务的顺序性问题,是构建AI应用不可或缺的一环。 本文旨在探讨深度
    的头像 发表于 12-09 11:01 3906次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>学习</b>工作负载<b class='flag-5'>中</b>GPU与LPU的主要差异