0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何通过集成动力总成系统降低电动汽车成本并增加行驶里程

电子设计 来源:电子设计 作者:电子设计 2022-01-12 14:31 次阅读

用更少的器件实现更多的汽车应用,既能减轻车重、降低成本,又能提高可靠性。这是集成电动汽车(EV)和混合动力汽车(HEV)设计背后的理念。

什么是集成动力总成?

集成动力总成旨在将车载充电器(OBC)、高压直流/直流(HV DCDC)转换器逆变器和配电单元(PDU)等终端设备结合到一起。机械、控制或动力总成级别均可进行集成,如图1所示。

为什么动力总成集成有利于混合动力汽车/电动汽车?

集成动力总成终端设备组件能够实现以下优势:

提高功率密度。

提高可靠性。

优化成本。

简化设计和组装,并支持标准化和模块化。

高性能集成动力总成解决方案:电动汽车普及的关键


实现集成动力总成的方法有很多。图2以车载充电器和高压直流/直流转换器集成为例,简要介绍了用于在结合动力总成、控制电路和机械组件时实现高功率密度的四种常见方法。它们分别是:市场应用现状

方法1:形成独立的系统。这种方法已不如几年前流行。

方法2:可分为两个步骤:

直流/直流转换器和车载充电器共享机械外壳,但拥有各自独立的冷却系统。

同时共享外壳和冷却系统(最常选用的方法)。

方法3:进行控制级集成。这种方法正在演变为第4种方法。

方法4:相比于其他三种方法,此方法由于减少了电源电路中的电源开关和磁性元件,所以成本优势更大,但它的控制算法也更复杂。

图2:车载充电器和直流/直流转换器集成的四种常见方法

表1概括了目前市场上的集成架构:

可降低电磁干扰(EMI)的高压三合一集成:车载充电器、高压直流/直流转换器和配电单元的集成(方法3) 集成架构:车载充电器和高压直流/直流转换器的集成(方法4) 43kW充电器设计:车载充电器、牵引逆变器和牵引电机的集成(方法4)
6.6kW车载充电器
2.2kW直流/直流转换器
配电单元
*第三方数据报告显示,这类设计能够使体积和重量减少大概40%,并且使功率密度提高大概40%
6.6kW车载充电器
1.4kW直流/直流转换器
磁集成
共享电源开关
共享控制单元
(一个微控制器[MCU]控制的功率因数校正级,一个微控制器控制的直流/直流级,以及一个高压直流/直流转换器)
交流充电功率高达43kW
共享电源开关
共享电机绕组

表1:集成动力总成的三种成功实现

动力总成集成方框图

图3为一个动力总成的方框图,该动力总成实现了电源开关共享和磁集成的架构。

如图3所示,车载充电器和高压直流/直流转换器都连接至高压电池,因此车载充电器和高压直流/直流转换器的全桥额定电压相同。这样,便可以通过全桥使得车载充电器和高压直流/直流转换器实现电源开关共享。

此外,将图3所示的两个变压器集成在一起还可以实现磁集成。这是因为它们在高压侧的额定电压相同,能够最终形成三端变压器。

性能提升

当这个集成拓扑在高压电池充电条件下工作时,高压输出可得到精确控制。但是,由于变压器的两个端子耦合在一起,所以低压输出的性能会受到限制。有一个简单的方法可以提升低压输出性能,那就是添加一个内置降压转换器。但这样做的代价就是会导致成本增加。

共享组件

像车载充电器和高压直流/直流转换器集成一样,车载充电器中的功率因数校正级和三个半桥的额定电压非常接近。这样,便可以通过由两个终端设备组件共享的三个半桥来实现电源开关共享,如图5所示。这可以降低成本并提高功率密度。

由于一个电机一般有三个绕组,因此也可以将这些绕组用作车载充电器中的功率因数校正电感器,借此实现磁集成。这也有助于降低设计成本和提高功率密度。

结束语

从低级别的机械集成到高级别的电子集成,集成的发展仍在继续。随着集成级别的提高,系统的复杂性也将增加。但是,每种架构变体都会带来不同的设计挑战,包括:

为进一步优化性能,必须精心设计磁集成。

采用集成系统时,控制算法会更加复杂。

设计高效的冷却系统,以适应更小型系统的散热需求。

灵活性是动力总成集成的关键。众多方法任您选择,您可以任意地探索各种级别的集成设计。

审核编辑:金巧

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 汽车
    +关注

    关注

    12

    文章

    2985

    浏览量

    36072
收藏 人收藏

    评论

    相关推荐

    增程式电动汽车电气架构

    REEV)是一种结合了内燃机和电动机的混合动力汽车,其主要特点是在电池电量耗尽后,可以通过内燃机为电池充电,从而延长行驶
    的头像 发表于 01-09 17:18 525次阅读
    增程式<b class='flag-5'>电动汽车</b>电气架构

    尼得科动力系统研发出混合动力电动汽车离合器控制模块新产品

    增加,但存在充电基础设施和电池容量等问题,混合动力电动汽车(HEV)依然保持着较高的市场份额。本产品在低速行驶和加速时以电机为动力源,高速巡
    的头像 发表于 12-28 16:03 167次阅读

    Cadence为电动汽车能效提升注入新动力

    电动汽车(EV)为例,通过提升电池组的直流电工作电压,就能有效降低传动系统的电流负荷,这为设计师提供了一个新的思路:使用更轻便且成本更低的
    的头像 发表于 12-18 12:25 1119次阅读
    Cadence为<b class='flag-5'>电动汽车</b>能效提升注入新<b class='flag-5'>动力</b>

    增程式电动汽车的定义 增程式电动汽车和插电式混合动力汽车对比

    目前,对增程式电动车的定义有些模糊,在世界范围内尚没有一个严格的定义。如图一所示,我把我们国家以及美国对增程式电动车的定义及六个关键词列了出来:电动汽车、纯电续航里程、延长续航
    的头像 发表于 12-01 09:55 954次阅读
    增程式<b class='flag-5'>电动汽车</b>的定义 增程式<b class='flag-5'>电动汽车</b>和插电式混合<b class='flag-5'>动力</b><b class='flag-5'>汽车</b>对比

    舍弗勒创新技术助力提升电动汽车续航里程

    舍弗勒的创新技术可提升电动汽车续航里程,或在不牺牲续航里程的前提下提升驾乘舒适性 高效轮毂轴承和变速箱轴承可减少摩擦,从而大幅降低系统能耗
    的头像 发表于 11-05 16:16 691次阅读
    舍弗勒创新技术助力提升<b class='flag-5'>电动汽车</b>续航<b class='flag-5'>里程</b>

    如何使用 C2000™ 实时 MCU 实现功能安全和网络安全的电动汽车动力总成

    如何使用 C2000™ 实时 MCU 实现功能安全和网络安全的电动汽车动力总成
    的头像 发表于 10-26 16:37 274次阅读
    如何使用 C2000™ 实时 MCU 实现功能安全和网络安全的<b class='flag-5'>电动汽车</b><b class='flag-5'>动力</b><b class='flag-5'>总成</b>

    SiC主驱逆变器让电动汽车延长5%里程的秘诀

    ),令电动汽车日益普及。高盛近期的一项研究显示,到 2023 年,电动汽车销量将占全球汽车销量的 10%;到 2030 年,预计将增长至 30%;到 2035 年,电动汽车销量将有可能
    的头像 发表于 10-19 11:05 257次阅读

    基于stm32的电动汽车交流充电桩设计与实现

    成本低的电动汽车交流充电设备适用于公共停车场和小区停车场等场合,能够实现人机交互、IC卡信息认证和消费信息处理等功能。
    发表于 09-21 07:58

    关于尼得科动力系统研发出混合动力电动汽车离合器控制模块新产品的公告

    充电基础设施和电池容量等问题,混合动力电动汽车(HEV)依然保持着较高的市场份额。本产品在低速行驶和加速时以电机为动力源,高速巡航时以发动机为动力
    发表于 08-31 15:26 898次阅读
    关于尼得科<b class='flag-5'>动力系统</b>研发出混合<b class='flag-5'>动力</b><b class='flag-5'>电动汽车</b>离合器控制模块新产品的公告

    浅析电动汽车动力总成系统

    广义的动力总成包括了汽车从产生动力并最终传递至车轮,即整个能量传递过程中所涉及到的所有部件。
    发表于 07-10 10:58 389次阅读
    浅析<b class='flag-5'>电动汽车</b>的<b class='flag-5'>动力</b><b class='flag-5'>总成</b><b class='flag-5'>系统</b>

    新能源动力总成系统图解

    动力总成汽车动力源泉, 是动力传输、变换的中枢系统, 是
    的头像 发表于 06-27 14:52 946次阅读
    新能源<b class='flag-5'>动力</b><b class='flag-5'>总成</b><b class='flag-5'>系统</b>图解

    通过SiC技术电机逆变器实现电动汽车行驶里程拓展的承诺

    目前有两大因素影响着车辆运输和半导体技术的未来。行业正在拥抱令人振奋的新方法,即以清洁的电力驱动我们的汽车,同时重新设计支撑电动汽车(EV)子系统的半导体材料,以最大程度地提高功效比,进而增加
    的头像 发表于 06-16 10:31 589次阅读
    <b class='flag-5'>通过</b>SiC技术电机逆变器实现<b class='flag-5'>电动汽车行驶</b><b class='flag-5'>里程</b>拓展的承诺

    在相同电池尺寸下增加电动汽车的续航里程–效率

    电动汽车(EV)是移动出行的未来,但消费者大规模采用的最大障碍是里程焦虑和价格。虽然使用更大的电池将是增加续航里程的明显解决方案,但它会大大增加
    的头像 发表于 06-08 11:14 599次阅读
    在相同电池尺寸下<b class='flag-5'>增加</b><b class='flag-5'>电动汽车</b>的续航<b class='flag-5'>里程</b>–效率

    电动汽车快充很爽,背后的电路保护技术可不简单

    汽车电气化时代已经到来,随之带来了一波创新技术的进步。然而,在采用这些技术时,安全是最需要考虑的因素之一。当今,电动汽车市场的需求和发展趋向于减少充电时间、增加行驶里程,以及质量更好的
    的头像 发表于 05-20 10:35 1077次阅读

    德州仪器推出碳化硅栅极驱动器,可更大限度延长电动汽车行驶里程

     (EV) 行驶里程。全新 UCC5880-Q1 增强型隔离式栅极驱动器提供的功能可使电动汽车动力总成工程师能够在提高功率密度、
    的头像 发表于 05-18 14:36 411次阅读
    德州仪器推出碳化硅栅极驱动器,可更大限度延长<b class='flag-5'>电动汽车行驶</b><b class='flag-5'>里程</b>