0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用TensorFlow Lite从Android设备图像提取文本

Tensorflowers 来源:TensorFlow 作者:魏巍 2021-11-02 15:34 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

俗话说:“一图胜千言”。图像包含丰富的视觉信息,但有时关键信息位于图像的文本当中。虽然识字的人可以轻松理解图像中嵌入的文字,但我们如何利用计算机视觉机器学习来教计算机做到这一点呢?

今天,我们将向您展示如何使用 TensorFlow Lite 从 Android 设备上的图像中提取文本。我们将引导您完成最近开源的光学字符识别 (OCR) Android 参考应用的关键步骤,您可参考该处获取完整代码。在下方动画中,可以看到该应用如何从三款 Google 产品徽标图片中提取产品名称。

该处

https://github.com/tensorflow/examples/tree/master/lite/examples/optical_character_recognition/android

从图像中识别文本的过程即为 OCR,该技术在多个领域中广泛使用。例如,Google 地图运用 OCR 技术从地理定位图像中提取信息,进而完善 Google 地图。

Google 地图运用 OCR 技术

https://ai.googleblog.com/2017/05/updating-google-maps-with-deep-learning.html

一般来说,OCR 是一个包含多个步骤的流水线。相关步骤通常包含文本检测和文本识别:

使用文本检测模型查找文本周围的边界框;

执行一些后处理操作,以转换边界框;

将这些边界框内的图像转换为灰度图像,如此一来,文本识别模型便可绘制出文字和数字。

在示例中,我们将利用 TensorFlow Hub 中的文本检测和文本识别模型。多个不同的模型版本可用来权衡速度/准确率的取舍;我们在此使用的是 float16 量化模型。如需有关模型量化的更多信息,请参阅 TensorFlow Lite 量化文档。

文本检测

https://hub.tensorflow.google.cn/sayakpaul/lite-model/east-text-detector/fp16/1

文本识别

https://hub.tensorflow.google.cn/tulasiram58827/lite-model/keras-ocr/float16/2

TensorFlow Lite 量化

https://tensorflow.google.cn/lite/performance/model_optimization

我们还会使用 OpenCV,这是一款广泛使用的计算机视觉库,适用于非极大值抑制 (NMS) 和透视变换(我们稍后会对此展开讨论),以对检测结果进行后处理。此外,我们还会使用 TFLite 支持库对图像进行灰度和标准化处理。

非极大值抑制

https://www.coursera.org/lecture/convolutional-neural-networks/non-max-suppression-dvrjH

TFLite 支持库

https://tensorflow.google.cn/lite/inference_with_metadata/lite_support

对于文本检测,由于检测模型支持 320x320 的固定像素,我们会使用 TFLite 支持库调整输入图像的大小并对其进行标准化处理:

检测模型

https://hub.tensorflow.google.cn/sayakpaul/lite-model/east-text-detector/fp16/1

val imageProcessor =

ImageProcessor.Builder().add(ResizeOp(height, width, ResizeOp.ResizeMethod.BILINEAR)).add(NormalizeOp(means, stds)).build()

var tensorImage = TensorImage(DataType.FLOAT32)

tensorImage.load(bitmapIn)

tensorImage = imageProcessor.process(tensorImage)

接下来,我们使用 TFLite 运行检测模型:

detectionInterpreter.runForMultipleInputsOutputs(detectionInputs, detectionOutputs)

检测模型的输出是一些经过旋转且图像内包含文本的边界框。我们会运行非极大值抑制,借助 OpenCV 为每个文本块确定一个边界框:

NMSBoxesRotated(

boundingBoxesMat,

detectedConfidencesMat,

detectionConfidenceThreshold.toFloat(),

detectionNMSThreshold.toFloat(),

indicesMat

有些时候,图像内的文本会出现变形(例如,我的笔记本电脑上的“kubernetes”贴纸),并伴随一个透视角度:

如果我们只是将原始旋转边界框直接“喂”给识别模型,则该模型不太可能正确识别字符。在本例中,我们需要使用 OpenCV 来进行透视变换:

val rotationMatrix = getPerspectiveTransform(srcPtsMat, targetPtsMat)

warpPerspective(

srcBitmapMat,

recognitionBitmapMat,

rotationMatrix,

Size(recognitionImageWidth.toDouble(), recognitionImageHeight.toDouble()))

之后,我们会再次使用 TFLite 支持库,在边界框内调整变换图像的大小,并对其进行灰度和归一化处理:

val imageProcessor =

ImageProcessor.Builder().add(ResizeOp(height, width, ResizeOp.ResizeMethod.BILINEAR)).add(TransformToGrayscaleOp()).add(NormalizeOp(mean, std)).build()

最后,我们会运行文本识别模型、根据模型输出绘制出字符与数字,然后更新应用界面:

recognitionInterpreter.run(recognitionTensorImage.buffer, recognitionResult)

var recognizedText = “”for (k in 0 until recognitionModelOutputSize) {

var alphabetIndex = recognitionResult.getInt(k * 8)if(alphabetIndex in 0..alphabets.length - 1)

recognizedText = recognizedText + alphabets[alphabetIndex]}

Log.d(“Recognition result:”, recognizedText)if (recognizedText != “”) {

ocrResults.put(recognizedText, getRandomColor())}

这样就完成了,就是这么简单。此时,我们可以在我们的应用中使用 TFLite 来提出输入图像中的文本。

最后我想指出的是,如果您只是需要一个即用型 OCR SDK,您可以直接使用 Google ML Kit 的文字识别功能。ML Kit 底层使用了 TFLite,并且对于大多数 OCR 用例而言足矣。在以下情况下,您可以使用 TFLite 来构建专属 OCR 解决方案:

您有自己想要使用的专属文本检测/识别 TFLite 模型;

您有特殊的业务需求(例如识别颠倒的文本),并且需要自定义 OCR 流水线;

您希望支持 ML Kit 没有覆盖的语言;

您的目标用户设备不一定要安装 Google Play 服务;

您想要控制用于运行模型的硬件后端(CPUGPU 等)。

ML Kit

https://developers.google.cn/ml-kit/vision/text-recognition

Google Play 服务

https://developers.google.cn/android/guides/overview

在这些情况下,我希望本教程和我们的实现示例可以助您开启在您的应用中构建专属 OCR 功能的旅程。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 应用
    +关注

    关注

    2

    文章

    441

    浏览量

    34775
  • OCR
    OCR
    +关注

    关注

    0

    文章

    170

    浏览量

    17052
  • tensorflow
    +关注

    关注

    13

    文章

    331

    浏览量

    61855
  • TensorFlow Lite
    +关注

    关注

    0

    文章

    26

    浏览量

    804

原文标题:基于 TensorFlow Lite 的 OCR:一款崭新的示例应用

文章出处:【微信号:tensorflowers,微信公众号:Tensorflowers】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    图像采集卡终极指南:原理到选型

    在机器视觉、工业检测、医疗影像等领域,图像采集卡是连接前端图像设备与后端计算系统的核心枢纽。它不仅解决了原始图像信号与计算机数据的“格式互通”问题,更决定了
    的头像 发表于 11-19 15:54 202次阅读
    <b class='flag-5'>图像</b>采集卡终极指南:<b class='flag-5'>从</b>原理到选型

    【上海晶珩睿莓1开发板试用体验】将TensorFlow-Lite物体归类(classify)的输出图片移植到LVGL9.3界面中

    既然调通了TensorFlow-Lite物体归类(classify)和LVGL9.3代码,那么把这两个东西结合起来也是没问题的,需要注意的是,TensorFlow-Lite是C++代码,而
    发表于 09-21 00:39

    【上海晶珩睿莓1开发板试用体验】TensorFlow-Lite物体归类(classify)

    目前尚未得知睿莓1开发板上面有NPU或者DPU之类的额外处理器,因此使用树莓派系列使用最广泛的TensorFlow-Lite库进行物体归类,使用CPU运行代码,因此占用的是CPU的算力。在
    发表于 09-12 22:43

    一文详解AHB-Lite协议

    总线协议,AHB_Lite只有单主机,且没有HBUSREQ和HGRANT信号,同时设备信号接口也简单许多。
    的头像 发表于 08-27 09:23 2552次阅读
    一文详解AHB-<b class='flag-5'>Lite</b>协议

    如何为 Android 操作系统/设备生成 APK ?

    如何为 Android 操作系统/设备生成 APK ?
    发表于 06-30 07:12

    无法将Tensorflow Lite模型转换为OpenVINO™格式怎么处理?

    Tensorflow Lite 模型转换为 OpenVINO™ 格式。 遇到的错误: FrontEnd API failed with OpConversionFailure:No translator found for TFLite_Detection_PostP
    发表于 06-25 08:27

    无法使用OpenVINO™在 GPU 设备上运行稳定扩散文本图像的原因?

    在OpenVINO™ GPU 设备上使用图像大小 (1024X576) 运行稳定扩散文本图像,并收到错误消息: RuntimeError: Exception from
    发表于 06-25 06:36

    如何在Android设备上安装Cyusb3014芯片驱动?

    1.如何在Android设备上安装Cyusb3014芯片驱动? 我们在 Windows 上有 FX3 驱动程序 SDK。 2.如何在Android系统上下载固件到芯片中?
    发表于 05-15 07:23

    FlexBuild构建Debian 12,在“tflite_ethosu_delegate”上构建失败了怎么解决?

    /workspace/tn_debian_FlexBuild 构建/components_lsdk2412/apps/ml/tflite/tensorflow/lite/tools/cmake
    发表于 04-01 06:53

    Android 16有哪些变更

    全球范围内有超过 30 亿台 Android 设备正在使用中,这使得 Android 生态系统比以往任何时候都更加活跃。Android 移动应用能够在手机、可折叠
    的头像 发表于 03-27 10:18 1543次阅读

    用树莓派搞深度学习?TensorFlow启动!

    介绍本页面将指导您在搭载64位Bullseye操作系统的RaspberryPi4上安装TensorFlowTensorFlow是一个专为深度学习开发的大型软件库,它消耗大量资源。您可以在
    的头像 发表于 03-25 09:33 963次阅读
    用树莓派搞深度学习?<b class='flag-5'>TensorFlow</b>启动!

    把树莓派打造成识别文本的“神器”!

    在许多项目中,RaspberryPi被用作监控摄像头或执行机器学习任务。在这些场景中,图像中经常包含应用程序感兴趣的文本信息。我们希望提取这些信息并将其转换,以便通过程序分析文本
    的头像 发表于 03-25 09:30 756次阅读
    把树莓派打造成识别<b class='flag-5'>文本</b>的“神器”!

    OpenVINO™是否与TensorFlow集成支持Raspberry Pi?

    无法确定OpenVINO™是否与 TensorFlow* 集成支持 Raspberry Pi。
    发表于 03-05 08:26

    为什么无法将自定义EfficientDet模型TensorFlow 2转换为中间表示(IR)?

    将自定义 EfficientDet 模型 TensorFlow* 2 转换 为 IR 时遇到错误: [ ERROR ] Exception occurred during running replacer \"REPLACEMENT_ID\" ()
    发表于 03-05 06:29

    EE-300:Blackfin EZ-KIT Lite电路板与CMOS图像传感器的接口

    电子发烧友网站提供《EE-300:Blackfin EZ-KIT Lite电路板与CMOS图像传感器的接口.pdf》资料免费下载
    发表于 01-05 10:00 0次下载
    EE-300:Blackfin EZ-KIT <b class='flag-5'>Lite</b>电路板与CMOS<b class='flag-5'>图像</b>传感器的接口