0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

9个快速使用Pytorch训练解决神经网络的技巧(附代码

新机器视觉 来源:读芯术 作者:读芯术 2021-11-02 09:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

这份终极指南从简单到复杂,一步步教你清除模型中所有的GP模型,直到你可以完成的大多数PITA修改,以充分利用你的网络。

事实上,你的模型可能还停留在石器时代的水平。估计你还在用32位精度或GASP(一般活动仿真语言)训练,甚至可能只在单GPU上训练。如果市面上有99个加速指南,但你可能只看过1个?(没错,就是这样)。但这份终极指南,会一步步教你清除模型中所有的(GP模型)。

这份指南的介绍从简单到复杂,一直介绍到你可以完成的大多数PITA修改,以充分利用你的网络。例子中会包括一些Pytorch代码和相关标记,可以在 Pytorch-Lightning训练器中用,以防大家不想自己敲码!

这份指南针对的是谁? 任何用Pytorch研究非琐碎的深度学习模型的人,比如工业研究人员、博士生、学者等等……这些模型可能要花费几天,甚至几周、几个月的时间来训练。

本文涵盖以下内容(从易到难):

  1. 使用DataLoader
  2. DataLoader中的进程数
  3. 批尺寸
  4. 累积梯度
  5. 保留计算图
  6. 转至单GPU
  7. 16位混合精度训练
  8. 转至多GPU(模型复制)
  9. 转至多GPU节点(8+GPUs)
  10. 有关模型加速的思考和技巧

Pytorch-Lightning

文中讨论的各种优化,都可以在Pytorch-Lightning找到:https://github.com/williamFalcon/pytorch-lightning?source=post_page

Lightning是基于Pytorch的一个光包装器,它可以帮助研究人员自动训练模型,但关键的模型部件还是由研究人员完全控制。

参照此篇教程,获得更有力的范例:https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/single_gpu_node_template.py?source=post_page

Lightning采用最新、最尖端的方法,将犯错的可能性降到最低。

MNIST定义的Lightning模型可适用于训练器:https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/lightning_module_template.py?source=post_page

frompytorch-lightningimportTrainer
model=LightningModule(…)
trainer=Trainer()
trainer.fit(model)

1. DataLoader

这可能是最容易提速的地方。靠保存h5py或numpy文件来加速数据加载的日子已经一去不复返了。用 Pytorch dataloader 加载图像数据非常简单:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html?source=post_page

关于NLP数据,请参照TorchText:https://torchtext.readthedocs.io/en/latest/datasets.html?source=post_page

dataset=MNIST(root=self.hparams.data_root,train=train,download=True)
loader=DataLoader(dataset,batch_size=32,shuffle=True)
forbatchinloader:
x,y=batch
model.training_step(x,y)
...

在Lightning中,你无需指定一个训练循环,只需定义dataLoaders,训练器便会在需要时调用它们。

2. DataLoaders中的进程数

加快速度的第二个秘诀在于允许批量并行加载。所以,你可以一次加载许多批量,而不是一次加载一个。

#slow
loader=DataLoader(dataset,batch_size=32,shuffle=True)
#fast(use10workers)
loader=DataLoader(dataset,batch_size=32,shuffle=True,num_workers=10)

3. 批量大小(Batch size)

在开始下一步优化步骤之前,将批量大小调高到CPU内存或GPU内存允许的最大值。

接下来的部分将着重于减少内存占用,这样就可以继续增加批尺寸。

记住,你很可能需要再次更新学习率。如果将批尺寸增加一倍,最好将学习速度也提高一倍。

4. 累积梯度

假如已经最大限度地使用了计算资源,而批尺寸仍然太低(假设为8),那我们则需为梯度下降模拟更大的批尺寸,以供精准估计。

假设想让批尺寸达到128。然后,在执行单个优化器步骤前,将执行16次前向和后向传播(批量大小为8)。

#clearlaststep
optimizer.zero_grad()

#16accumulatedgradientsteps
scaled_loss=0
foraccumulated_step_iinrange(16):
out=model.forward()
loss=some_loss(out,y)
loss.backward()

scaled_loss+=loss.item()

#updateweightsafter8steps.effectivebatch=8*16
optimizer.step()

#lossisnowscaledupbythenumberofaccumulatedbatches
actual_loss=scaled_loss/16properties

而在Lightning中,这些已经自动执行了。只需设置标记:

trainer=Trainer(accumulate_grad_batches=16)
trainer.fit(model)

5. 保留计算图

撑爆内存很简单,只要不释放指向计算图形的指针,比如……为记录日志保存loss。

losses=[]

...
losses.append(loss)

print(f'currentloss:)

上述的问题在于,loss仍然有一个图形副本。在这种情况中,可用.item()来释放它。

#bad
losses.append(loss)

#good
losses.append(loss.item())

Lightning会特别注意,让其无法保留图形副本。示例:https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/models/trainer.py#L812

6. 单GPU训练

一旦完成了前面的步骤,就可以进入GPU训练了。GPU的训练将对许多GPU核心上的数学计算进行并行处理。能加速多少取决于使用的GPU类型。个人使用的话,推荐使用2080Ti,公司使用的话可用V100。

刚开始你可能会觉得压力很大,但其实只需做两件事:1)将你的模型移动到GPU上,2)在用其运行数据时,把数据导至GPU中。

#putmodelonGPU
model.cuda(0)

#putdataongpu(cudaonavariablereturnsacudacopy)
x=x.cuda(0)

#runsonGPUnow
model(x)

如果使用Lightning,则不需要对代码做任何操作。只需设置标记:

#asklightningtousegpu0fortraining
trainer=Trainer(gpus=[0])
trainer.fit(model)

在GPU进行训练时,要注意限制CPU和GPU之间的传输量。

#expensive
x=x.cuda(0)

#veryexpensive
x=x.cpu()
x=x.cuda(0)

例如,如果耗尽了内存,不要为了省内存,将数据移回CPU。尝试用其他方式优化代码,或者在用这种方法之前先跨GPUs分配代码。

此外还要注意进行强制GPUs同步的操作。例如清除内存缓存。

#reallybadidea.StopsalltheGPUsuntiltheyallcatchup
torch.cuda.empty_cache()

但是如果使用Lightning,那么只有在定义Lightning模块时可能会出现这种问题。Lightning特别注意避免此类错误。

7. 16位精度

16位精度可以有效地削减一半的内存占用。大多数模型都是用32位精度数进行训练的。然而最近的研究发现,使用16位精度,模型也可以很好地工作。混合精度指的是,用16位训练一些特定的模型,而权值类的用32位训练。

要想在Pytorch中用16位精度,先从NVIDIA中安装 apex 图书馆 并对你的模型进行这些更改。

#enable16-bitonthemodelandtheoptimizer
model,optimizers=amp.initialize(model,optimizers,opt_level='O2')

#whendoing.backward,letampdoitsoitcanscaletheloss
withamp.scale_loss(loss,optimizer)asscaled_loss:
scaled_loss.backward()

amp包会处理大部分事情。如果梯度爆炸或趋于零,它甚至会扩大loss。

在Lightning中, 使用16位很简单,不需对你的模型做任何修改,也不用完成上述操作。

trainer=Trainer(amp_level=’O2',use_amp=False)
trainer.fit(model)

8. 移至多GPU

现在,事情就变得有意思了。有3种(也许更多?)方式训练多GPU。

  • 分批量训练

919be072-3a75-11ec-82a9-dac502259ad0.jpg

A)在每个GPU上复制模型;B)给每个GPU分配一部分批量。

第一种方法叫做分批量训练。这一策略将模型复制到每个GPU上,而每个GPU会分到该批量的一部分。

#copymodeloneachGPUandgiveafourthofthebatchtoeach
model=DataParallel(model,devices=[0,1,2,3])

#outhas4outputs(oneforeachgpu)
out=model(x.cuda(0))

在Lightning中,可以直接指示训练器增加GPU数量,而无需完成上述任何操作。

#asklightningtouse4GPUsfortraining
trainer=Trainer(gpus=[0,1,2,3])
trainer.fit(model)
  • 分模型训练

91dcd8a2-3a75-11ec-82a9-dac502259ad0.jpg

将模型的不同部分分配给不同的GPU,按顺序分配批量

有时模型可能太大,内存不足以支撑。比如,带有编码器和解码器的Sequence to Sequence模型在生成输出时可能会占用20gb的内存。在这种情况下,我们希望把编码器和解码器放在单独的GPU上。

#eachmodelissooobigwecan'tfitbothinmemory
encoder_rnn.cuda(0)
decoder_rnn.cuda(1)

#runinputthroughencoderonGPU0
out=encoder_rnn(x.cuda(0))

#runoutputthroughdecoderonthenextGPU
out=decoder_rnn(x.cuda(1))

#normallywewanttobringalloutputsbacktoGPU0
out=out.cuda(0)

对于这种类型的训练,无需将Lightning训练器分到任何GPU上。与之相反,只要把自己的模块导入正确的GPU的Lightning模块中:

classMyModule(LightningModule):

def__init__():
self.encoder=RNN(...)
self.decoder=RNN(...)

defforward(x):
#modelswon'tbemovedafterthefirstforwardbecause
#theyarealreadyonthecorrectGPUs
self.encoder.cuda(0)
self.decoder.cuda(1)

out=self.encoder(x)
out=self.decoder(out.cuda(1))

#don'tpassGPUstotrainer
model=MyModule()
trainer=Trainer()
trainer.fit(model)
  • 混合两种训练方法

在上面的例子中,编码器和解码器仍然可以从并行化每个操作中获益。我们现在可以更具创造力了。

#changetheselines
self.encoder=RNN(...)
self.decoder=RNN(...)

#tothese
#noweachRNNisbasedonadifferentgpuset
self.encoder=DataParallel(self.encoder,devices=[0,1,2,3])
self.decoder=DataParallel(self.encoder,devices=[4,5,6,7])

#inforward...
out=self.encoder(x.cuda(0))

#noticeinputsonfirstgpuindevice
sout=self.decoder(out.cuda(4))#<--- the 4 here

使用多GPUs时需注意的事项

  • 如果该设备上已存在model.cuda(),那么它不会完成任何操作。

  • 始终输入到设备列表中的第一个设备上。

  • 跨设备传输数据非常昂贵,不到万不得已不要这样做。

  • 优化器和梯度将存储在GPU 0上。因此,GPU 0使用的内存很可能比其他处理器大得多。

9. 多节点GPU训练

9215bdd4-3a75-11ec-82a9-dac502259ad0.jpg

每台机器上的各GPU都可获取一份模型的副本。每台机器分得一部分数据,并仅针对该部分数据进行训练。各机器彼此同步梯度。

做到了这一步,就可以在几分钟内训练Imagenet数据集了! 这没有想象中那么难,但需要更多有关计算集群的知识。这些指令假定你正在集群上使用SLURM。

Pytorch在各个GPU上跨节点复制模型并同步梯度,从而实现多节点训练。因此,每个模型都是在各GPU上独立初始化的,本质上是在数据的一个分区上独立训练的,只是它们都接收来自所有模型的梯度更新。

高级阶段:

  1. 在各GPU上初始化一个模型的副本(确保设置好种子,使每个模型初始化到相同的权值,否则操作会失效。)

  2. 将数据集分成子集。每个GPU只在自己的子集上训练。

  3. On .backward() 所有副本都会接收各模型梯度的副本。只有此时,模型之间才会相互通信

Pytorch有一个很好的抽象概念,叫做分布式数据并行处理,它可以为你完成这一操作。要使用DDP(分布式数据并行处理),需要做4件事:

deftng_dataloader(,m):

d=MNIST()
#4:Adddistributedsampler
#samplersendsaportionoftngdatatoeachmachine
dist_sampler=DistributedSampler(dataset)
dataloader=DataLoader(d,shuffle=False,sampler=dist_sampler)

defmain_process_entrypoint(gpu_nb):
#2:setupconnectionsbetweenallgpusacrossallmachines
#allgpusconnecttoasingleGPU"root"
#thedefaultusesenv://
world=nb_gpus*nb_nodes
dist.init_process_group("nccl",rank=gpu_nb,world_size=world)

#3:wrapmodelinDPP
torch.cuda.set_device(gpu_nb)
model.cuda(gpu_nb)
model=DistributedDataParallel(model,device_ids=[gpu_nb])

#trainyourmodelnow...

if__name__=='__main__':
#1:spawnnumberofprocesses
#yourclusterwillcallmainforeachmachine
mp.spawn(main_process_entrypoint,nprocs=8)

Pytorch团队对此有一份详细的实用教程:https://github.com/pytorch/examples/blob/master/imagenet/main.py?source=post_page

然而,在Lightning中,这是一个自带功能。只需设定节点数标志,其余的交给Lightning处理就好。

#trainon1024gpusacross128nodes
trainer=Trainer(nb_gpu_nodes=128,gpus=[0,1,2,3,4,5,6,7])

Lightning还附带了一个SlurmCluster管理器,可助你简单地提交SLURM任务的正确细节。示例:https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/multi_node_cluster_template.py#L103-L134

10. 福利!更快的多GPU单节点训练

事实证明,分布式数据并行处理要比数据并行快得多,因为其唯一的通信是梯度同步。因此,最好用分布式数据并行处理替换数据并行,即使只是在做单机训练。

在Lightning中,通过将distributed_backend设置为ddp(分布式数据并行处理)并设置GPU的数量,这可以很容易实现。

#trainon4gpusonthesamemachineMUCHfasterthanDataParallel
trainer=Trainer(distributed_backend='ddp',gpus=[0,1,2,3])

有关模型加速的思考和技巧

如何通过寻找瓶颈来思考问题?可以把模型分成几个部分:

首先,确保数据加载中没有瓶颈。为此,可以使用上述的现有数据加载方案,但是如果没有适合你的方案,你可以把离线处理及超高速缓存作为高性能数据储存,就像h5py一样。

接下来看看在训练过程中该怎么做。确保快速转发,避免多余的计算,并将CPU和GPU之间的数据传输最小化。最后,避免降低GPU的速度(在本指南中有介绍)。

接下来,最大化批尺寸,通常来说,GPU的内存大小会限制批量大小。自此看来,这其实就是跨GPU分布,但要最小化延迟,有效使用大批次(例如在数据集中,可能会在多个GPUs上获得8000+的有效批量大小)。

但是需要小心处理大批次。根据具体问题查阅文献,学习一下别人是如何处理的!

原文链接:https://towardsdatascience.com/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565

编辑:jq
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    11216

    浏览量

    222888
  • 数据
    +关注

    关注

    8

    文章

    7314

    浏览量

    93952
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5099

    浏览量

    134435
  • pytorch
    +关注

    关注

    2

    文章

    813

    浏览量

    14688

原文标题:用Pytorch训练快速神经网络的9个技巧

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    (q7_t) 和 16 位整数 (q15_t)。 卷积神经网络示例: 本示例中使用的 CNN 基于来自 Caffe 的 CIFAR-10 示例。神经网络由 3 卷积层组成,中间散布着 ReLU
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    在完成神经网络量化后,需要将神经网络部署到硬件加速器上。首先需要将所有权重数据以及输入数据导入到存储器内。 在仿真环境下,可将其存于一文件,并在 Verilog 代码中通过 read
    发表于 10-20 08:00

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 882次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    基于FPGA搭建神经网络的步骤解析

    本文的目的是在一神经网络已经通过python或者MATLAB训练好的神经网络模型,将训练好的模型的权重和偏置文件以TXT文件格式导出,然后
    的头像 发表于 06-03 15:51 888次阅读
    基于FPGA搭建<b class='flag-5'>神经网络</b>的步骤解析

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不
    的头像 发表于 02-12 16:41 1249次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1301次阅读

    如何优化BP神经网络的学习率

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是一些优化BP神经网络学习率的方法: 一、理解学习率的重要性 学习率决定了模型参数在每次迭代时更新的幅度。过大的学习率可能导致模型在
    的头像 发表于 02-12 15:51 1419次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过
    的头像 发表于 02-12 15:36 1563次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算
    的头像 发表于 02-12 15:18 1271次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,
    的头像 发表于 02-12 15:15 1338次阅读

    BP神经网络在图像识别中的应用

    传播神经网络(Back Propagation Neural Network),是一种多层前馈神经网络,主要通过反向传播算法进行学习。它通常包括输入层、一或多个隐藏层和输出层。BP神经网络
    的头像 发表于 02-12 15:12 1182次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两阶段:前向传播和反向传播。以下是训练BP
    的头像 发表于 02-12 15:10 1461次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2236次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法