0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器人搭建过程中的坑和未来的改进方向

STM32嵌入式开发 来源:CSDN博客 作者: Jumping润 2021-09-26 10:59 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

机器人整体开源,同时总结一下机器人搭建过程中遇到的坑和未来的改进方向。在分享的文件里包含了结构设计、程序控制、电路设计以及其他模块相关资料供大家参考。

机器人原理分析

该机器人根据陀螺仪的位姿数据,通过三个全向轮驱动底部球体调整自己在球上的位置,保持动态平衡的同时实现全向移动。

保持动态平衡过程需要对机器人进行运动学分析,这里参考了平衡小车之家的运动学方程:

自平衡控制问题转化为三步:输入X、Y角度—控制器计算—输出A、B、C电机转速的控制模型。

控制器设计

首先考虑参考平衡车控制,球上自平衡机器人本质上依然是一个一阶倒立摆问题。

这里参考了飞思卡尔直立车的控制方法,采用串级PID控制器,外环PD角度环,内环速度PI环。

由于我的驱动方案选择的是42步进电机,在速度闭环的时候有些问题。正常的直流电机+编码器的控制方案可以通过编码器将轮子的真实速度计算出来,从而和控制器的理想转速作差,实现速度控制。

而我这里的速度闭环是通过计算上一个时钟周期时给步进电机的控制量,通过运动学方程分解,得到机器人的虚拟速度,与理想转速作差控制。我认为这种速度闭环方式还是存在一定缺陷的,但是在网上查看论文的时候我发现有很多自平衡机器人都是用42步进电机来实现速度闭环的,不知道是什么方法。

这里还可以好好思考一下为什么角度环要用PD控制,速度环要PI控制,角度环的P部分和D部分对机器人控制有什么影响?在很多CSDN调试平衡车的博客中都有解释,这里就留给大家思考了。

硬件及结构设计

自平衡机器人的硬件清单有:

56mm全向轮 45元/个

42步进电机 25/个

42步进闭环模块 59.8元/个

LM2596S降压模块 20元

STM32F103C8T6-4飞控板 59.8元

GY-521六轴陀螺仪 25元

用到的模块大致如上所示,C8T6的价格随着最近芯片涨价直线上升,我白嫖了实验室的两块板子,现在买一块实在太贵,可以等芯片价格稳定一些再买。其余开关排针等常见元件不再赘述。

电路原理图如下所示:

7cbf0d6e-136a-11ec-8fb8-12bb97331649.png

机器人使用solidworks设计整体结构,底板可在某宝定制6050太空铝切割,蓝色件为正常3D打印件。

程序部分

keil 5中开发STM32。

控制程序采用定时器0.5ms定时中断的方式进行计算,每触发两次中断计算对电机控制一次,这里还是推荐大家采用外部中断读取GY-521上的INT引脚的方式,控制计算周期。GY-521上的INT引脚每5ms触发一次跳变,采用外部中断的方式可以严格保证读取位姿数据与计算处理同步。

int TIM1_UP_IRQHandler (void) { u8 key_cal; if(TIM_GetITStatus(TIM1,TIM_IT_Update) != RESET) { TIM_ClearITPendingBit(TIM1,TIM_IT_Update); flag_target=!flag_target; key_cal=KEY_Scan(0); if(state_flag==1)//矫正结束 { if(flag_target==1)//每读取两次陀螺仪控制一次 { Read_DMP(); //===读取倾角 scope();

return 0; } } if(key_cal==1)//矫正按键 { Angle_Zero_X=Angle_Balance_X; Angle_Zero_Y=Angle_Balance_Y; key_cal=0; Flag_Stop=0; } if(key_cal==2||key_cal==3)//矫正按键 { Flag_Stop=1;//关闭速度环I积分 key_cal=0; } Angle_Bias_X =Angle_Balance_X-Angle_Zero_X;

//获取Y方向的偏差 Angle_Bias_Y =Angle_Balance_Y-Angle_Zero_Y; //获取Y方向的偏差 if(control_mode==0)//PID控制模式 { Encoder_Analysis(Motor_A,Motor_B,Motor_C); //正运动学分析,得到X Y方向的速度 Balance_Pwm_X= balance_X(Angle_Bias_X,Gyro_Balance_X);

//X方向的倾角控制 Balance_Pwm_Y=-balance_Y(Angle_Bias_Y,Gyro_Balance_Y); //Y方向的倾角控制// if(++flag_target_2==4)//速度环频率慢于加速度环 但是还没加速度环 // { Velocity_Pwm_X=velocity_X(compute_X);

//X方向的速度控制 Velocity_Pwm_Y=velocity_Y(compute_Y); //Y方向的速度控制 // flag_target_2=0;// } Move_X =Balance_Pwm_X+Velocity_Pwm_X;

//===X方向控制量累加 Move_Y =Balance_Pwm_Y+Velocity_Pwm_Y; //===Y方向控制量累加 Move_Z=0; Kinematic_Analysis(Move_X,Move_Y,Move_Z);//逆运动学分析得到ABC电机控制量 } Motor_A=Target_A;//直接调节PWM频率 Motor_B=Target_B;//直接调节PWM Motor_C=Target_C;//直接调节PWM//以下都是为了速度连续化处理防止突变

if(Motor_A==0) Motor_A=motor_a_last; if(Motor_B==0) Motor_B=motor_b_last; if(Motor_C==0)

Motor_C=motor_c_last; Xianfu_Pwm(2000); Set_Pwm(Motor_A,Motor_B,Motor_C);

Gyro_Balance_X_last=Gyro_Balance_X; Gyro_Balance_Y_last=Gyro_Balance_Y;

Gyro_Balance_Z_last=Gyro_Balance_Z; Angle_Balance_X_last=Angle_Balance_X;

Angle_Balance_Y_last=Angle_Balance_Y; Angle_Balance_Z_last=Angle_Balance_Z;

motor_a_last=Motor_A; motor_b_last=Motor_B; motor_c_last=Motor_C; } return 0;}

对于电机控制,由于采用的驱动方案是步进电机,调速的方式是改变驱动步进电机的脉冲频率。我这里选择了三个定时器,动态调节定时器的频率,具体方式是在初始化时设定好定时器的预分频系数psc的值,然后在程序里动态更改ARR寄存器的值,从而改变定时器的定时频率。

//这里以A电机的速度控制为例 输入为 电机方向和电机速度void set_motorA_speed(u8 dir,u16 speed){ u32 arr; arr=speed; TIM_ARRPreloadConfig(TIM3,DISABLE); TIM3-》ARR=arr;//计数到10000在归零重新计数 TIM3-》CCR4=arr/2;//保持占空比为50% TIM_ARRPreloadConfig(TIM3,ENABLE); TIM_Cmd(TIM3,ENABLE);

if(dir==0) { GPIO_SetBits(GPIOA,GPIO_Pin_1); } else { GPIO_ResetBits(GPIOA,GPIO_Pin_1); }}

小车的运动学分解代码实现如下,参考了平衡小车之家的代码:

/**********************************************************函数功能:小车运动数学模型入口参数:X Y Z 三轴速度或者位置返回 值:无***********************************************************/void Kinematic_Analysis(float Vx,float Vy,float Vz)

{ Target_A = Vx + L_PARAMETER*Vz; Target_B = -X_PARAMETER*Vx + Y_PARAMETER*Vy + L_PARAMETER*Vz; Target_C = -X_PARAMETER*Vx - Y_PARAMETER*Vy + L_PARAMETER*Vz;}/*****************************************************************函数功能:小车运动 正运动学分析 入口参数:A B C三个电机的速度返回 值:无******************************************************************/void Encoder_Analysis(float Va,float Vb,float Vc){ compute_X=(Va*2-Vb-Vc); compute_Y=((Vb-Vc)*sqrt(3)); compute_Z=(Va+Vb+Vc); }

其余代码不全放出,可在文末点击“阅读原文”下载查看。

总结与展望

球上自平衡机器人可以作为算法试验平台, 输入输出固定,更换不同控制器,将数据导入MATLAB进行分析即可比较控制器性能。

个人认为结构有两个改进方向,一方面参考以下论文:余义。 单球驱动自平衡机器人位姿解算与控制系统研究[D]。武汉科技大学,2019。论文中采用的四足式驱动结构更有利于机器人自平衡控制。

另一方面可以增加球体和机器人固定装置,利用机械结构将机器人与底部驱动球结合成一个整体防止机器人跳轮等问题。同时驱动球对于机器人平衡的影响较大,最好还是定制空心钢球,然后喷漆增大摩擦力,最有利于机器人自平衡控制。

控制部分的改进,首先是控制原理,本文是针对建立好的运动学方程进行分析,通过串级PID算法来实现自平衡运动。该机器人的控制问题本质上是一阶倒立摆问题,可以采用动力学建模的方式,通过动力学分析算出平衡需要的虚拟力矩,再对电机进行力矩控制。

其次是控制器,PID控制算法应用广泛但也有一定的缺点,可以考虑采用模糊PID,ADRC自抗扰控制器,强化学习等智能控制算法对机器人自平衡进行控制。

原文链接:https://blog.csdn.net/qq_42823167/article/details/118085368

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器人
    +关注

    关注

    213

    文章

    30580

    浏览量

    219511
  • STM32
    +关注

    关注

    2305

    文章

    11120

    浏览量

    371114

原文标题:STM32自平衡机器人项目,附代码、电路图等资料

文章出处:【微信号:c-stm32,微信公众号:STM32嵌入式开发】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    探索RISC-V在机器人领域的潜力

    运行ROS 2,充分证明了RISC-V架构完全有能力承载机器人操作系统这样的复杂软件栈。它不仅是学习RISC-V的绝佳工具,更是探索未来边缘计算和智能机器人的一个强大起点。 致谢: 感谢进迭时空、发烧友提供开发板,以及论坛
    发表于 12-03 14:40

    高压放大器在机器人攀爬速度测试实验的应用

    是否能够在杆上成功爬升,并使用高速相机对上升过程进行了记录,通过获得爬杆机器人的各项关键性能指标与理论设计进行对比,为机器人未来版本的优化与改进
    的头像 发表于 11-26 10:48 125次阅读
    高压放大器在<b class='flag-5'>机器人</b>攀爬速度测试实验<b class='flag-5'>中</b>的应用

    小萝卜机器人的故事

    代替, LED, 有大佬感兴趣, 一起关注和讨论代码, 这个机器人知名度不高, 可是是机器人的原型, 如果开放接口, 定位和无线充电, 也不失为未来的礼物。 让我们为小萝卜工程师的, 自掏腰包救萝卜
    发表于 10-23 05:24

    什么是机器人?追溯机器人技术的演变和未来

    作者: Aswin S Babu 什么是机器人? 在日常生活里,“机器人”一词我们都不陌生,日常交谈也常常脱口而出。但大家可曾细想过,这个词的真正含义究竟为何?接下来,不妨花些时间,深入探究
    的头像 发表于 10-02 16:32 4126次阅读
    什么是<b class='flag-5'>机器人</b>?追溯<b class='flag-5'>机器人</b>技术的演变和<b class='flag-5'>未来</b>

    机器人竞技幕后:磁传感器芯片激活 “精准感知力”

    2025 世界人形机器人运动会于 8 月 17 日圆满收官,赛场上机器人在跑步、跳跃、抓取等项目中的精彩表现,背后是运动控制、环境感知等技术的迭代升级。而在这些技术,磁传感器芯片凭借独特优势,成为
    发表于 08-26 10:02

    工业机器人的特点

    的基础,也是三者的实现终端,智能制造装备产业包括高档数控机床、工业机器人、自动化成套生产线、精密仪器仪表、智能传感器、汽车自动化焊接线、柔性自动化生产线、智能农机、3D 打印机等领域。而智能制造装备工业
    发表于 07-26 11:22

    明远智睿SSD2351开发板:语音机器人领域的变革力量

    源的开发资料为开发者提供了深入研究和定制语音机器人功能的基础,开发者可以根据不同的应用需求,对语音识别算法、语音合成引擎等进行优化和改进。一对一的技术支持则能及时解决开发过程中遇到的难题,保障语音
    发表于 05-28 11:36

    盘点#机器人开发平台

    Athena机器人****开发平台思岚推出Athena机器人开发平台,有望主导机器人开发平台未来市场-电子发烧友网AUTO CUBEROS机器人
    发表于 05-13 15:02

    详细介绍机场智能指路机器人的工作原理

    路径。路径规划算法会考虑多种因素,如距离最短、避开人流密集区域、优先选择宽阔通道等,以确保旅客能够快速、顺畅地到达目的地。 实时导航与避障 :在机器人引导旅客的过程中,导航系统会实时监控机器人的运动状态
    发表于 05-10 18:26

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    相机标定是视觉系统的基石,直接影响后续图像处理的精度。书中详细介绍了单目和双目相机的标定流程,包括标定板的使用、参数优化以及标定文件的应用。 实际应用,标定误差可能导致机器人定位偏差,因此标定过程
    发表于 05-03 19:41

    【「# ROS 2智能机器人开发实践」阅读体验】机器人入门的引路书

    的非常好的,特别是一些流程图,很清晰的阐释了概念 很适合作为初学者入门的引路书 还能了解很多技术和框架,破除初学者的自负困境,让初学者知道功能是由很多开发者维护的,前人已经为各种产品搭建了完善的框架。避免陷入得一个单打独斗的错觉 一直蠢蠢欲动ros2和
    发表于 04-30 01:05

    【「具身智能机器人系统」阅读体验】2.具身智能机器人大模型

    的设计不仅提高了机器人对环境的理解能力,还使其能够更精准地执行复杂任务。 扩散模型的新思路 除了大模型,扩散模型的引入为机器人控制开辟了新的研究方向。在以UniPi为代表的创新工作
    发表于 12-29 23:04

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    、家庭服务机器人等。具身智能机器人技术与市场的融合闭环是自主经济重要的发展方向之一。 具身智能机器人是一种能够在没有人类直接控制的情况下自
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+初品的体验

    解决许多技术的和非技术的挑战,如提高智能体的自主性、处理复杂环境互动的能力及确保行为的伦理和安全性。 未来的研究需要将视觉、语音和其他传感技术与机器人技术相结合,以探索更加先进的知识表示和记忆模块,利用强化学习进一步优化决策过程
    发表于 12-20 19:17

    移动机器人的技术突破和未来展望

    移动机器人已经成为现代社会不可或缺的一部分,在各个领域发挥着越来越重要的作用。在这个过程中,富唯智能机器人以其卓越的技术突破,引领着移动机器人领域的发展潮流。
    的头像 发表于 12-13 17:57 926次阅读
    移动<b class='flag-5'>机器人</b>的技术突破和<b class='flag-5'>未来</b>展望