当前的自动驾驶和辅助驾驶系统中,激光雷达和毫米波雷达等传感器已经屡见不鲜,但图像传感器主攻的摄像头视觉系统依然未被任何一家车厂抛弃。反观特斯拉,更是一直坚持纯视觉方案。那么图像传感器究竟有何优势,又是如何解决自动驾驶带来的挑战的?
不同位置的汽车图像传感器
单从传感器数量上来看,图像传感器无疑是ADAS和AD应用中用在车身上最多的传感器,遍布车身各个位置。但在像素、动态范围等参数上,这些图像传感器往往不会统一,那么它们的位置是如何决定其配置的呢?安森美(onsemi)中国汽车市场现场应用经理陈力答道,远距离摄像头例如前视/后视,要求高灵敏度,高动态范围,抑制LED闪烁和高像素数,以满足长距离小障碍物探测需要,目前常用8百万像素;而近距离摄像头例如环视,要求高灵敏度,中等动态范围和中等像素数,主要探测车身周围的场景,目前常用到2~3百万像素;如果是抓拍高速运动场景的摄像头,则需要考虑采用全局快门图像传感器。
除了车外用于ADAS和AD的图像传感器外,用于环视和监控的传统摄像头应用也要用到图像传感器,但它们的参数需求同样存在差异。环视摄像头为人眼视觉+低速应用,ADAS是机器视觉+高速应用。后者强调传感器的功能安全,低照性能,动态范围,空间解析力和抗LED闪烁功能要求。
车内监控也分驾驶员监控(DMS)和乘客监控(OMS),出于安全考虑,欧盟和中国均出台了相关政策,强制要求部分商用车型中装配DMS系统。OMS系统虽然面世不算久,但在安全带检测、车内乘客滞留提醒等应用上同样起到至关重要的作用。这两大车内监控系统中,DMS侧重于机器视觉,需要时刻关注驾驶员的状态,因此往往用到黑白的全局快门图像传感器。而OMS则侧重于记录功能,可用彩色或RGB-IR的滚动快门传感器。
LED闪烁问题如何抑制
汽车图像传感器最常见的挑战之一就是LED闪烁抑制(LFM),就像人眼对于LED屏幕的闪烁的感知一样,如今的手机常常用到DC调光和PWM的方案。而汽车图像传感器就像是车上的眼睛,对车外的LED光线同样会有所感应,那么汽车图像传感器又是如何解决LFM问题,改变车灯的频率有没有可能改善LED闪烁呢?
陈力给出了这一问题的解释:采用DC调光方式的LED没有闪烁的问题,此时LED一直常亮,仅通过调幅来调节亮度,整个过程中灯并没有熄灭的状态; 而另外一种更常见的LED灯是PWM调频驱动方式,即以一种一明一暗的光脉冲方式在照明,脉冲闪烁频率从几十到几百赫兹都有可能,这种闪烁是照明场景客观存在的现象,虽然人眼通常看不到,但能被图像传感器所感知。从某种角度来说,图像传感器输出的结果更客观真实,而眼睛反倒欺骗了你。光脉冲的闪烁频率取决于PWM频率,其亮度取决于占空比,不同LED灯通常频率也不同。抑制LED闪烁常见的方法是增大曝光时间,曝光时间越长,每行像素能抓到更多光脉冲,从而削弱了闪烁的强度,但曝光时间越长,带来的运动模糊也越明显。同理,增加LED灯的频率也可以减小LED闪烁,但LED灯频率往往不可控,实际场景中,LED闪烁不仅仅出现在车灯上,环境中的LED照明都存在类似闪烁,例如信号灯,广告灯等等。
高动态范围(HDR)和超级曝光
动态范围在汽车图像传感器上有着非常高的要求,真实世界场景下的动态范围极端情况下可以达到140 dB,所以这类产品往往都要做到120 dB以上,目前传统HDR采用的多重曝光合并方式会产生高速运动伪影的现象,这对ADAS应用中的算法提出了一定要求。
为了解决同时做到LFM和HDR又能保证成像质量的挑战,安森美的Hayabusa系列汽车图像传感器采用了超级曝光像素的技术。通过扩展像素容量,可以做到长时间曝光捕捉脉冲光而不会过饱和,并将动态范围扩展至线性像素容量的5倍。Hayabusa只需单次曝光就能在兼顾LFM的情况下实现95 dB的动态范围。陈力提到,在多次曝光合并技术基础上,传统像素需要3次曝光来实现120 dB的动态范围,而Hayabusa只需要两次曝光合并就可以实现120 dB的动态范围,大大改善了运动伪影问题。与大小像素技术相比,超级曝光没有两种像素结构带来的巨大的光学设计挑战,即边缘像素性能急剧恶化和严重的像素间串扰,也不会因为校准和去噪而导致细节与分辨率的损失。
结语
面对其他高性能传感器的竞争,图像传感器凭借其成本、大小等优势依然牢牢占据着汽车市场。这一视觉方案凭借LFM和HDR等特性,以及超级曝光等技术的创新,依然在其弱项上进行突破,适配更多的驾驶场景。
不同位置的汽车图像传感器

车身上不同位置的图像传感器 / 安森美
单从传感器数量上来看,图像传感器无疑是ADAS和AD应用中用在车身上最多的传感器,遍布车身各个位置。但在像素、动态范围等参数上,这些图像传感器往往不会统一,那么它们的位置是如何决定其配置的呢?安森美(onsemi)中国汽车市场现场应用经理陈力答道,远距离摄像头例如前视/后视,要求高灵敏度,高动态范围,抑制LED闪烁和高像素数,以满足长距离小障碍物探测需要,目前常用8百万像素;而近距离摄像头例如环视,要求高灵敏度,中等动态范围和中等像素数,主要探测车身周围的场景,目前常用到2~3百万像素;如果是抓拍高速运动场景的摄像头,则需要考虑采用全局快门图像传感器。

安森美中国汽车市场现场应用经理陈力 / 安森美
除了车外用于ADAS和AD的图像传感器外,用于环视和监控的传统摄像头应用也要用到图像传感器,但它们的参数需求同样存在差异。环视摄像头为人眼视觉+低速应用,ADAS是机器视觉+高速应用。后者强调传感器的功能安全,低照性能,动态范围,空间解析力和抗LED闪烁功能要求。
车内监控也分驾驶员监控(DMS)和乘客监控(OMS),出于安全考虑,欧盟和中国均出台了相关政策,强制要求部分商用车型中装配DMS系统。OMS系统虽然面世不算久,但在安全带检测、车内乘客滞留提醒等应用上同样起到至关重要的作用。这两大车内监控系统中,DMS侧重于机器视觉,需要时刻关注驾驶员的状态,因此往往用到黑白的全局快门图像传感器。而OMS则侧重于记录功能,可用彩色或RGB-IR的滚动快门传感器。
LED闪烁问题如何抑制
汽车图像传感器最常见的挑战之一就是LED闪烁抑制(LFM),就像人眼对于LED屏幕的闪烁的感知一样,如今的手机常常用到DC调光和PWM的方案。而汽车图像传感器就像是车上的眼睛,对车外的LED光线同样会有所感应,那么汽车图像传感器又是如何解决LFM问题,改变车灯的频率有没有可能改善LED闪烁呢?

有无LFM的对比 / 安森美
陈力给出了这一问题的解释:采用DC调光方式的LED没有闪烁的问题,此时LED一直常亮,仅通过调幅来调节亮度,整个过程中灯并没有熄灭的状态; 而另外一种更常见的LED灯是PWM调频驱动方式,即以一种一明一暗的光脉冲方式在照明,脉冲闪烁频率从几十到几百赫兹都有可能,这种闪烁是照明场景客观存在的现象,虽然人眼通常看不到,但能被图像传感器所感知。从某种角度来说,图像传感器输出的结果更客观真实,而眼睛反倒欺骗了你。光脉冲的闪烁频率取决于PWM频率,其亮度取决于占空比,不同LED灯通常频率也不同。抑制LED闪烁常见的方法是增大曝光时间,曝光时间越长,每行像素能抓到更多光脉冲,从而削弱了闪烁的强度,但曝光时间越长,带来的运动模糊也越明显。同理,增加LED灯的频率也可以减小LED闪烁,但LED灯频率往往不可控,实际场景中,LED闪烁不仅仅出现在车灯上,环境中的LED照明都存在类似闪烁,例如信号灯,广告灯等等。
高动态范围(HDR)和超级曝光
动态范围在汽车图像传感器上有着非常高的要求,真实世界场景下的动态范围极端情况下可以达到140 dB,所以这类产品往往都要做到120 dB以上,目前传统HDR采用的多重曝光合并方式会产生高速运动伪影的现象,这对ADAS应用中的算法提出了一定要求。

超级曝光像素与大小像素的对比 / 安森美
为了解决同时做到LFM和HDR又能保证成像质量的挑战,安森美的Hayabusa系列汽车图像传感器采用了超级曝光像素的技术。通过扩展像素容量,可以做到长时间曝光捕捉脉冲光而不会过饱和,并将动态范围扩展至线性像素容量的5倍。Hayabusa只需单次曝光就能在兼顾LFM的情况下实现95 dB的动态范围。陈力提到,在多次曝光合并技术基础上,传统像素需要3次曝光来实现120 dB的动态范围,而Hayabusa只需要两次曝光合并就可以实现120 dB的动态范围,大大改善了运动伪影问题。与大小像素技术相比,超级曝光没有两种像素结构带来的巨大的光学设计挑战,即边缘像素性能急剧恶化和严重的像素间串扰,也不会因为校准和去噪而导致细节与分辨率的损失。
结语
面对其他高性能传感器的竞争,图像传感器凭借其成本、大小等优势依然牢牢占据着汽车市场。这一视觉方案凭借LFM和HDR等特性,以及超级曝光等技术的创新,依然在其弱项上进行突破,适配更多的驾驶场景。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
电动车
+关注
关注
73文章
3112浏览量
118082 -
图像传感器
+关注
关注
68文章
2051浏览量
131909
发布评论请先 登录
相关推荐
热点推荐
onsemi AR2020图像传感器:低功耗高性能的理想之选
在当今的图像传感领域,对高分辨率、低功耗且具备出色性能的传感器需求愈发迫切。onsemi的AR2020图像传感器,作为Hyperlux LP
汽车传感器融合技术的发展与挑战
来源:本文编译自semiengineering作者:ANNMUTSCHLER在汽车设计领域,传感器融合正变得日益流行且复杂。它将多种类型的传感器集成到单个芯片或封装中,并智能地将数据路由到所需之处
使用位置传感器进行无刷电机控制
刷直流电机或场定向控制 (FOC) 无刷交流电机,确实可以实现无需任何旋转角度传感器即可工作。但实际情况是,工业和人形机器人、自主移动机器人和直线电机运输系统等终端设备,旋转角度传感器或线性位置传感器
霍尔IC在电动车调速转把中的应用与原理
。而且霍尔IC还可以与其他的传感器和控制器配合使用,从而实现更为复杂的系统控制。总的来说,霍尔IC的应用使得电动车的控制更加可靠和安全,也为电动车的智能化发展打下了重要的基础。
发表于 08-07 10:46
无位置传感器直流无刷电机软件起动
为了解决无位置传感器直流无刷电机在起动时基于反电动势的位置检测方法无法提取出位置信息的问题,分析了无位置传感器直流无刷电机的起动方法,针对电动车这一特殊的应用场合进行了相应的改进,
发表于 08-04 14:49
CMOS图像传感器的制造步骤
CIS 英文全名 CMOS (Complementary Metal-Oxide Semiconductor) Image Sensor,中文意思是互补性金属氧化物半导体图像传感器。CMOS 图像
电动车控制器气密性检测究竟存在哪些问题
新能源汽车产业高速发展,电动车控制器作为动力系统核心,其可靠性影响整车安全与耐久。部分隐患未被有效识别,合格品或有泄漏风险,电动车控制器气密性检测存在的问题主要包括以下几个方面:一、设
求助,关于传感器融合库的使用问题求解
试验,找到了一些问题点,希望能得到官方的技术支持。
问题1:原先我水平旋转传感器,航向角的误差很大,比如说误差30度。通过我反复测试后发现是陀螺仪零漂的问题,motionfx库设置静态时校准零漂,但是当
发表于 04-27 08:59
电机驱动中霍尔转子位置传感器介绍
、线性霍尔、开关型霍尔。
旋转变压器,属于高精度位置传感器,主要应用在汽车及工业领域,其成本比较高;磁编码器与光电编码器,用于一些伺服控制领域,如机器人、机械臂、工业设备中,成本次之;
发表于 02-12 17:35
CMOS传感器技术原理 CMOS传感器与CCD传感器比较
和逻辑电路设计。然而,随着技术的不断进步,CMOS技术也被广泛应用于图像传感器领域。CMOS传感器的工作原理基于半导体材料的特性,通过光电转换和信号放大等过程,将光信号转换为电信号,从而实现对
ccd传感器坏了有什么症状 ccd传感器和cmos传感器哪个好
故障或损坏时,可能会出现以下症状: 图像质量问题 : 黑屏现象 :相机或摄像机无法捕捉到任何图像,屏幕显示为黑色。这可能是由于传感器损坏导致无法接收光线或信号转换失败。 花屏现象 :屏幕上出现不规则的色彩块或条纹,
干簧管传感器属于什么传感器
干簧管传感器,又称磁簧开关传感器或磁敏开关,是一种基于干簧管(Reed Switch)原理工作的传感器。作为一种重要的磁传感器,干簧管传感器
CMOS传感器的图像处理能力
随着科技的飞速发展,图像处理技术已经成为我们日常生活中不可或缺的一部分。CMOS传感器作为图像捕捉的核心,其图像处理能力直接影响到成像质量。 CMOS

电动车纷纷走向传感器融合,图像传感器依然是yyds
评论