0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

天线的HFSS和CST仿真介绍与对比

ExMh_zhishexues 来源:微波射频网 作者:94巨蟹座少年 2021-08-27 15:14 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

摘要:

目前常用的电磁仿真软件有HFSS、CST、FEKO等,HFSS软件仿真电小物体相对而言要比CST更精确,CST对宽带天线的求解速度则比HFSS更胜一筹!因为CST是基于时域有限积分法,只需要输入一个时域脉冲就可以仿真宽带频谱结果。

本文使用的软件为CST2018和AnsysEM 18.2

0 1简单介绍

HFSS里内置的求解算法目前有:有限元算法(FEM),积分方程算法(IE),高频算法(SBR+ Solver), 混合算法(FEBI,IE-Region),域分解算法(DDM,FA-DDM),时域算法(Transient),特征模算法(CMA),本征模求解器(Eigenmode solver)等https://zhuanlan.zhihu.com/p/113897875

大部分人其实仿真简单的天线和滤波器等,使用HFSS的有限元算法和软件自身的自适应网格剖分和加密技术,设置好收敛的Max Mag Delta S(默认0.02)就足以满足其仿真需求。

对于软件的使用和其他算法求解器的设置这里就不做过多赘述了。

大部分工程师在使用HFSS软件时都会发现,其对电脑的配置要求较高,尤其是内存。而且电大尺寸、超宽带的仿真要求的算力更是难以满足。

CST恰恰弥补了HFSS仿真超宽带的短板,但是它在小尺寸、圆形等结构上的仿真精度不高。如下图所示,HFSS在边缘部分特别是圆形结构附件的三角网格剖分的特别细腻,而CST的六面体网格的剖分过于规整。

虽然缝隙和圆形等结构附近的剖分虽然可以采用CST的局部网格加密Local Mesh等,但初学者可能还是HFSS的傻瓜式自适应剖分比较人性化。

CST软件采用了电磁场全波时域仿真算法―有限积分法(FIT),对麦克斯韦积分方程进行离散化并迭代求解。由于其所采用的时域算法FIT,只须一步步迭代求解,不用进行矩阵求逆。此内在特性决定了,其适合的仿真结构涵盖电小、电中和电大,均可取得良好的表现。体矩量法、有限元法和有限积分法三者的计算量(体现在CPU 时间和所需内存)分别正比于所分网格数N的3次、2次和1.1~1.2次方,可以看出有限积分法对于算力的要求要低于HFSS的有限元法。

对于CST软件,大家常用的也是Time Domain Solver,除此之外,它还有频域求解器、本征模求解器、积分方程法、渐进计算、多层介质算法。

下一节我们会对两种软件的进行仿真精度对比,主要是看HFSS的FEM+自动网格剖分加密仿真和CST的Time Domain Solver和Frequency Domain Solver。

0 2脚本构建背馈式贴片天线

常见的矩形贴片天线的馈电方式有侧馈电和背馈式等,本次推文采用背馈电式进行仿真分析。

先选定基板为0.762mm厚度的Rogers4350B,谐振频率为5.8GHz。(左右滑动可看完整公式)

经过上面公式计算可得贴片天线的宽度和长度分别为16.9mm和13.3mm。

经过上两次推文HFSS-API入门第一弹:画个Box和HFSS-API入门第二弹:基本形状和操作的教学,现在可以直接撸一个背馈式贴片天线的HFSS vbs脚本(下载链接见文末,examples文件夹内):

clear;clc;path = mfilename(‘fullpath’);i=strfind(path,‘’);path=path(1:i(end));cd(path);addpath(genpath(strcat(path,‘hfssapi-by-Jianhui Huang’)));try % 填写路径 % tmpPrjFile:生成的aedt或者hfss(安装hfss15以下的后缀名为.hfss)项目文件的路径名 % tmpScriptFile:生成的vbs脚本文件的路径名 tmpPrjFile = ‘F:vbsScriptPatch_Probe_Feed.aedt’; tmpScriptFile = ‘F:vbsScriptauto_code.vbs’;

% hfssExePath:HFSS软件的路径 hfssExePath = ‘D:softwareHFSS15AnsysEM18.2Win64ansysedt.exe’;

% 创建一个可读写vbs脚本文件。 fid = fopen(tmpScriptFile, ‘wt’);

%创建一个新的HFSS项目并插入一个新的设计文件。 hfssNewProject(fid); Design_name=‘element’; hfssInsertDesign(fid, Design_name); Patch_W=16.9;Patch_L=13.3; Sub_W=35;Sub_L=30;Sub_H=0.762;copper_H=0.035; Probe_dy=-4;Probe_dx=0; Inner_R=0.5;Diel_R=exp(50/60*sqrt(1))*Inner_R;Outer_R=1.5;L0=2; % hfssVariableInsert(fid,DesignName,variableName, value, units,flag) hfssVariableInsert(fid,Design_name,‘Patch_W’, Patch_W, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Patch_L’, Patch_L, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Sub_W’, Sub_W, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Sub_L’, Sub_L, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Sub_H’, Sub_H, ‘mm’,1);

hfssVariableInsert(fid,Design_name,‘copper_H’, copper_H, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Probe_dx’, Probe_dx, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Probe_dy’, Probe_dy, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘L0’, L0, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Inner_R’, Inner_R, ‘mm’,1); hfssVariableInsert(fid,Design_name,‘Diel_R’, ‘exp(50/60*sqrt(1))*Inner_R’, ‘mm’,2); hfssVariableInsert(fid,Design_name,‘Outer_R’, Outer_R, ‘mm’,1); % 画基板 % hfssBox(fid, BoxName, Start, Size, Units, Color, Material, Transparency, flag) hfssBox(fid, ‘Sub1’, {‘-Sub_W/2’, ‘-Sub_L/2’, ‘0mm’}, {‘Sub_W’, ‘Sub_L’, ‘Sub_H’}, ‘mm’,... “(0 128 128)”, “Rogers RO4350 (tm)”, 0, 2);

% 画贴片 hfssBox(fid, ‘Patch’, {‘-Patch_W/2’, ‘-Patch_L/2’, ‘Sub_H’}, {‘Patch_W’, ‘Patch_L’, ‘copper_H’}, ‘mm’,... “(255 128 0)”, “copper”, 0, 2); % 画GND hfssBox(fid, ‘GND’, {‘-Sub_W/2’, ‘-Sub_L/2’, ‘0mm’}, {‘Sub_W’, ‘Sub_L’, ‘-copper_H’}, ‘mm’,... “(128 128 128)”, “copper”, 0, 2);

% 画同轴部分 % 画同轴内芯 % hfssCylinder(fid, CylinderName, Axis, Center, Radius, Height, Units, Color, Material, Transparency, flag) hfssCylinder(fid, ‘Inner’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘Sub_H+copper_H’}, ‘Inner_R’,‘-(Sub_H+copper_H*2+L0)’, ‘mm’,... “(128 128 128)”, “copper”, 0, 2);

hfssCylinder(fid, ‘Diel’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘-copper_H’}, ‘Diel_R’,‘-L0’, ‘mm’,... “(0 128 128)”, “vacuum”, 0, 2); hfssCylinder(fid, ‘Outer’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘-copper_H’}, ‘Outer_R’,‘-L0’, ‘mm’,... “(128 128 128)”, “copper”, 0, 2); % 地板开过孔 hfssCylinder(fid, ‘GND_hole’, ‘Z’, {‘Probe_dx’, ‘Probe_dy’, ‘0mm’}, ‘Diel_R’,‘-copper_H’, ‘mm’,... “(255 128 0)”, “vacuum”, 0, 2);

% 布尔操作 hfssSubtract(fid, {‘Outer’}, {‘Diel’}, true); hfssSubtract(fid, {‘Sub1’,‘Patch’,‘Diel’}, {‘Inner’}, true); hfssSubtract(fid, {‘GND’}, {‘GND_hole’}, false);

% 保存项目文件到指定路径 hfssSaveProject(fid, tmpPrjFile,1);

% Close the HFSS Script File. fclose(fid); disp(‘vbs脚本已生成!’);catch disp(‘程序出现异常!’); fclose(fid);end

上面的代码按个人情况按图索骥地修改tmpPrjFile,tmpScriptFile ,hfssExePath这几个路径和Design_name,将编写的MATLAB生成vbs脚本的.m文件与下载的hfssapi-by-Jianhui Huang放在同一个总文件夹内,点击运行即可生成vbs脚本(在自行赋值的tmpScriptFile的这个路径下)。vbs脚本可以直接点击运行,或者在HFSS软件中Run Script。建模完成后,自行添加Region,设置Radiation边界条件和Analysis的Setup,即可进行仿真(后续boundary和analysis同步上来后可以在脚本中就建立好)。

Analysis设置

此时仿真结果可以看出天线谐振频率偏向低频,且输入阻抗偏离50欧姆。

这时候有人肯定就会说,调天线就是玄学,这么多变量我怎么知道调节哪些变量,变量调成多少合适,难道直接用Optimization? 其实了解过贴片天线相关原理的就晓得,这时候,只需要调节天线的长度和馈电偏离中心的位置即可,前者影响谐振频率,后者影响天线的匹配。

话不多说直接上图,可以看出当馈电点位置偏离贴片天线中心2.5mm时,其阻抗匹配较优。

不过此时天线的谐振频率还偏向低频5.6GHz,因此适当缩短天线长度即可完成5.8GHz背馈式贴片天线的设置。

矩形贴片天线长度扫参结果

0 3CST和HFSS仿真结果对比

在HFSS上方菜单栏选择Modeler-》Export,保存为step格式。

然后打开CST在Export下选择导入上面的STEP文件,并删除Region等无关模型,设置好材料属性和边界条件。

采用时域求解器和默认的网格剖分设置,仿真的谐振频率在5.759GHz,与HFSS仿真结果相差40MHz。

CST时域Meshproperties和S11结果

直接将上述模型的求解器改为频域求解器并按下图设置网格剖分,仿真的谐振频率在5.825GHz,与HFSS仿真结果相差25MHz左右,已经很接近了。

CST频域Meshproperties和S11结果

总体来说,电小尺寸的微带贴片天线在HFSS的FEM+自动网格剖分加密仿真和CST的时域和频域求解器下,仿真结果差异可以接受。毕竟天线设计属于工科范畴,实际还要考虑加工、焊接容差等,所以还是需要打几次PCB板进行测试分析、调试优化,死磕这点仿真差异并没有啥意义。

基础性地写代码编注释,建模仿真还是挺费时间和精力的,希望大家多点赞分享!

代码分享区

hfssapi-by-Jianhui Huang

下载链接(后续代码持续在下面链接更新):

https://pan.baidu.com/s/1N0EE3Uv7krkypfzi9vxCvg

提取码:o5p5

代码已封装好打包为p文件不可修改,每次重新下载覆盖,按函数注释进行掉包即可!

注释事项:MATLAB生成vbs脚本的.m文件与hfssapi-by-Jianhui Huang放在同一个总文件夹内。不要在examples文件夹内运行.m文件!

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 天线
    +关注

    关注

    71

    文章

    3361

    浏览量

    143711
  • hfss
    +关注

    关注

    32

    文章

    168

    浏览量

    51496

原文标题:贴片天线的HFSS和CST仿真对比

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【书籍评测活动NO.66】玩转高速电路:基于ANSYS HFSS的无源仿真实例

    HFSS的无源仿真实例》:涵盖 单端/差分信号传输线、信号过孔,典型走线过孔仿真实例;贯彻“先预测—再仿真”方法论,由简入繁,学以致用;一步一图+工程文件下载,决胜信号完整性! 书
    发表于 11-06 14:19

    求一份CST92F25资料

    想用CST92F25开发项目,找不到资料,可以把 CST92F25的开发资料(数据手册、用户手册、Pack包和例程等)发送到邮箱1436490767@qq.com吗?谢谢!
    发表于 08-06 10:33

    电磁遇上热与应力-CST多物理场仿真解决复杂工程挑战

    当电磁遇上热与应力,CST MPhysics Studio提供真正的全耦合多物理场仿真能力。电磁-热耦合、热失谐分析、热-机械耦合、电磁-机械耦合,解决复杂工程挑战。
    的头像 发表于 07-29 16:21 616次阅读
    电磁遇上热与应力-<b class='flag-5'>CST</b>多物理场<b class='flag-5'>仿真</b>解决复杂工程挑战

    新手入门:使用CST电磁软件进行贴片天线设计的5个基本步骤

    新手入门教程:使用CST进行贴片天线设计的5个基本步骤。从创建模型到结果分析,详细指导您完成2.45GHz微带贴片天线的完整设计流程。
    的头像 发表于 07-28 16:17 665次阅读
    新手入门:使用<b class='flag-5'>CST</b>电磁软件进行贴片<b class='flag-5'>天线</b>设计的5个基本步骤

    CST求解器选择指南:瞬态(T)、频域(F)还是积分方程(I)

    CST求解器选择指南:瞬态、频域还是积分方程?详解CST MWS三种核心求解器的特点和最佳应用场景,帮助您选择合适的求解器提升仿真效率
    的头像 发表于 07-25 14:24 597次阅读
    <b class='flag-5'>CST</b>求解器选择指南:瞬态(T)、频域(F)还是积分方程(I)

    CST Studio Suite电磁仿真如何驱动下一代产品创新?

    探索CST在多物理场仿真中的强大能力,从设计验证到仿真驱动创新的完整解决方案
    的头像 发表于 07-24 17:38 402次阅读
    <b class='flag-5'>CST</b> Studio Suite电磁<b class='flag-5'>仿真</b>如何驱动下一代产品创新?

    还在为电磁兼容(EMC)问题烦恼? CST仿真软件帮您节省百万测试成本

    经验和试错,效率低下? 如果这些问题让您感同身受,那么,是时候考虑将电磁仿真技术引入您的研发流程了。 仿真驱动设计:将EMC问题解决在“摇篮”里 传统的“设计-样机-测试-修改”模式,其最大的弊端在于问题发现得太晚。而CST S
    的头像 发表于 07-23 14:26 535次阅读

    CST92F25的文档

    CST92F25的开发文档说明还是比较全的,就是表达不够清晰,需要自己揣摩。
    发表于 07-20 14:01

    关于cst92f25的AT固件

    请问一下,有关于cst92f25的AT固件吗,在官网上没有看到
    发表于 07-02 18:48

    HFSS天线仿真

    为什网上已有的都是天线的发射过程仿真,有没有2个天线之间收发信号的仿真教程,主要是为了衡量两个天线之间收发信号的极限距离,求相关的
    发表于 05-29 17:20

    单频天线和双频天线对比

    单频天线和双频天线是无线通信领域中两种常见的天线类型,它们各自有着特定的应用场景和优缺点。本期我们将对这两种天线进行简要的对比
    的头像 发表于 03-17 15:37 1618次阅读

    HFSS 自动化建模工具

    因工作需求,自己写的HFSS参数自动化建模工具,目前只实现了常用的四种模型,可定制化,如需可联系 qq:1300038043 附件下载链接:https://pan.baidu.com/s/1TVeTTFiJw-pxSyT1AT8IQA 提取码: kxup
    发表于 02-27 17:44

    linux修改cst时区

    在 Linux 系统中,可以通过以下步骤将时区修改为 CST(中国标准时间,GMT+8 或称 Asia/Shanghai): 方法 1:通过 timedatectl 命令修改(适用于大多数现代
    的头像 发表于 02-12 10:27 1101次阅读

    G.726/G.711 CST算法用户指南

    电子发烧友网站提供《G.726/G.711 CST算法用户指南.pdf》资料免费下载
    发表于 12-21 09:46 0次下载
    G.726/G.711 <b class='flag-5'>CST</b>算法用户指南

    带您了解SIMULIA CST 电磁仿真软件 2025新功能 微辰三维

    SIMULIA CST 2025新功能上线,带您“零帧起手”电磁仿真.
    的头像 发表于 12-19 22:13 2330次阅读