0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深入研究网络传播背后的理论和直觉

新机器视觉 来源:DeepHub 作者:DeepHub 2021-06-25 11:15 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

你可能听说过图卷积,因为它在当时是一个非常热门的话题。虽然不太为人所知,但网络传播是计算生物学中用于网络学习的主要方法。在这篇文章中,我们将深入研究网络传播背后的理论和直觉,并将看到网络传播是图卷积的一种特殊情况。

网络传播是计算生物学中基于内疚关联原理的一种流行方法。

两种不同的网络传播观点:随机游走和扩散,以HotNet2为例。

网络传播是图卷积的一种特例。

1计算生物学中的网络传播

网络自然产生于许多真实世界的数据,如社交网络,交通网络,生物网络,仅举几个例子。网络结构编码了关于网络中每个个体角色的丰富信息。

在计算生物学中,像蛋白质相互作用(PPI)这样的生物网络,节点是蛋白质,边缘代表两个蛋白质相互作用的可能性,在重建生物过程,甚至揭示疾病基因方面非常有用[1,2]。这种重建可以简单地通过直接观察目标蛋白的邻近蛋白是否是生物过程或疾病的一部分来完成。这种通过邻近蛋白质来推断蛋白质隶属度的过程称为网络传播。我们将在下一节中更仔细地研究精确的数学公式,但是现在让我们想想为什么这样一个简单的方法有效。

这一切都归结为内疚关联(GBA)原则,即通过物理交互作用或其他相似度量(如基因共同表达),蛋白质彼此紧密相关,可能参与相同的生物过程或途径。GBA原理来自于观察到许多蛋白质复合物(如酵母[3]中的SAGA/TFIID复合物)定位于一个内聚网络模块。同样,在人类疾病基因网络[4]中,我们可以看到,例如,与耳、鼻、喉疾病或血液病相关的疾病基因都局限在网络模块中。作为旁注,在这篇文章中,蛋白质和基因这两个词将互换使用。

2网络传播的数学公式——两种不同的观点

符号

给定一个(无向)图G=(V, E, w),有n个顶点的顶点集V,边集E,权函数w,设A为相应的n × n维邻接矩阵:

ae754f60-d4f1-11eb-9e57-12bb97331649.png

利用对角度矩阵D,它的对角项是相应节点的度,我们可以将A按行或按列规格化,得到两个新的矩阵P和W。

ae7f021c-d4f1-11eb-9e57-12bb97331649.png

最后,设p0为°热编码的标签向量,其中p0对应的正标签节点的项为1,其余均为0。

随机游走

我们可以在网络上以随机游走的方式进行网络传播。在这种情况下,我们要问的关键问题如下。

通过一跳传播,从目标节点开始并最终到达任何一个具有正标签的节点的概率是多少?

在数学上,该操作对应于P和p0之间的矩阵向量乘法,得到预测得分向量y

ae8a225a-d4f1-11eb-9e57-12bb97331649.png

让我们看一个例子。考虑基因g1、g2、g3和g4的以下子网。假设g2和g3被注释到一种疾病中,这意味着已知这两个基因与此处研究的疾病有关。另一方面,g1和g4没有对该疾病进行注释(注意:这并不意味着它们对该疾病没有影响,而是目前还不知道它们与该疾病有关)。

为了确定g1是否与疾病相关,我们可以简单地设计一个从g1开始的单跳随机行走,看看它落在疾病基因(g2或g3)上的概率是多少。经过简单的计算,我们看到预测得分是2/3,这是相当高的。这是有道理的,因为g1的三个邻近基因中有两个与疾病相关,而根据GBA原理,g1很可能与这种疾病相关。

扩散

网络传播的另一种观点是通过网络进行扩散。在这种情况下,我们要问的关键问题如下。

有多少“热度”被扩散到目标节点?或者换句话说,从带有正标签的节点开始,通过一跳传播最终到达目标节点的概率是多少?

数学上,该操作对应于波浪号P和p0 (p0的标准化版本)之间的矩阵向量乘法,产生预测得分向量y波浪号。

aec2aeae-d4f1-11eb-9e57-12bb97331649.png

注:p0归一化保证了从一个概率分布映射到一个概率分布,即y波浪号等于1。

让我们回到上面的例子,通过网络传播疾病基因预测。这一次,我们想将标签传播作为扩散来执行。结果,两个注释疾病基因产生的总“热”中有很大一部分(5/12)被g1收集。因此g1很可能与本病相关。

3超越了单跳传播

单跳传播方法简单有效。然而,当标记数据稀缺时(这是计算生物学中典型的情况),单跳传播方法只能计算疾病基因直接邻居的非平凡预测分数。考虑到人类基因组中有超过2万个基因,这显然导致了次优预测。因此,我们可以扩展到2-hop, 3-hop,甚至更多,而不是局限于1-hop社区。图中显示了k-hop从k = 1到k = 2的传播过程。

HotNet2扩散

有许多不同的变体来执行多跳扩散或随机游走。我们将以HotNet2为例。与上面介绍的扩散类似,HotNet2算法迭代更新初始“heat”分布p0波浪线如下。

af29a47e-d4f1-11eb-9e57-12bb97331649.png

其中beta值从0到1,是将“热量”带回其源头的“重启概率”。包含这个重启概率的原因有几个(有些相关)。首先,之前定义的扩散算子给出了当前节点拥有的所有“热量”,因此在第t步,之前所有的扩散信息都丢失了。添加beta有效地在每一步中保留了一些热量,因此在第t步,分布包含了之前步骤的所有信息。其次,(非零)beta参数保证了t趋近于无穷时热分布的收敛性,从而给出了t=∞时热分布的封闭形式解

af34014e-d4f1-11eb-9e57-12bb97331649.png

最后,在[1]中已经证明,在生物通路重建、疾病基因预测等方面,这种HotNet2扩散方法比上一节定义的单跳网络传播能够产生持续更好的预测。

4与图卷积的关系

回想一下,图卷积网络遵循如下的分层传播规则。

af69358a-d4f1-11eb-9e57-12bb97331649.png

其中H(l)是第l层的隐藏特征,W(l)是可学习参数,非线性σ (DAD)内部的主导部分是具有自连接的谱归一化邻接矩阵。自连接的作用类似于重新启动概率,以保留当前迭代的一些信息。

通过下面的替换,我们可以完全重建标签传播作为图卷积的一种特殊情况。

用行归一化§或列归一化(W)版本替换谱归一化自连接邻接矩阵

用p(l)代替H(l)

用恒等式代替非线性和W(l)(或者干脆忽略这些变换)

af764964-d4f1-11eb-9e57-12bb97331649.png

注意,第一次替换不会改变图的频谱,因此仍然会执行相同的卷积操作。

现在你知道了,网络传播是图卷积的一种特殊情况!

5总结

基于关联原理,网络传播由于细胞组织的模块化,在计算生物学中被广泛应用于疾病基因预测等各种任务。我们已经深入研究了网络传播的两个观点及其与图卷积的联系。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • GBA
    GBA
    +关注

    关注

    0

    文章

    10

    浏览量

    8944
  • 图卷积网络
    +关注

    关注

    0

    文章

    8

    浏览量

    1629

原文标题:神经网络的学习方式网络传播和图卷积,两者到底什么关系?

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    的科学革命时期。主要是自然现象的经验描述,被称为实验科学。 第二范式:被称为理论科学,它以数学模型和理论为基础,研究现象的基本原理和规律。 第二范式推动了以数值计算的第三范式的变化。 第四范式:数据驱动将
    发表于 09-17 11:45

    这么地道的ADC资料被我找到了?400页原创pdf原理到应用全覆盖!

    内容简介 深入研究模数转换器(ADC),包括数字系统中的关键组件。 详细分析ADC架构及其在不同领域的应用。 将理论概念与实际应用相结合,重点关注设计考量、误差分析和电源管理。 探讨ADC高级主题
    发表于 08-22 13:52

    你懂不懂DL/T645协议?看这篇文章,包你懂!

    DL/T645协议不用深入研究,掌握这些就够用了。
    的头像 发表于 06-12 17:24 1903次阅读
    你懂不懂DL/T645协议?看这篇文章,包你懂!

    信号如何在PCB中传播

    为电磁兼容性(EMC)设计印刷电路板(PCB)时,需要从电磁场和电流的角度深入理解信号传播。这些概念之所以重要,是因为它们帮助我们设计出电磁场辐射低、对外部辐射或干扰敏感度低的 PCB。
    的头像 发表于 06-09 16:08 4572次阅读
    信号如何在PCB中<b class='flag-5'>传播</b>

    电机泥泵轴系系统扭振设计计算

    文章基于研究轴系扭转振动设计电机泥泵轴系系统,介绍了计算轴系自由摄动因有频率的传递矩阵法和计算强迫振动的动力放大系数法,并且深入研究分析机组强迫摄动中的激振力。用FUNET软件模拟计算泥泵叶轮的激振
    发表于 04-24 21:08

    射频电路设计——理论与应用

    也能了解和掌握射频、微波电路的基本设计原则和方法。全书共10章,涵盖传输线、匹配网络、滤波器、混频器、放大器和振荡器等主要射频微波系统单元的理论分析和设计问题及电路分析工具(圆图、网络参量和信号流图)。书中例题非常有实用价值。全
    发表于 04-03 11:41

    直流电机控制方法的Matlab仿真研究

    针对无刷直流电机的控制方法进行了深入研究 。根据无刷直流电机实际物理模型建立相应的数学模型,电机使用双闭环进行控制 。根据电机的实际工作特点,使用模糊自适应 PID 算法替代常规 PID 算法建立
    发表于 03-27 12:15

    深入解析三种锂电池封装形状背后的技术路线与工艺奥秘

    的工艺制程,犹如三把钥匙,开启着不同应用场景的大门。本文将深入解析这三种锂电池封装形状背后的技术路线与工艺奥秘。 一、方形锂电池:坚固方正背后的工艺匠心 (一)结构与设计优势 方形锂电池以其规整的外形示人,这种
    的头像 发表于 02-17 10:10 2019次阅读
    <b class='flag-5'>深入</b>解析三种锂电池封装形状<b class='flag-5'>背后</b>的技术路线与工艺奥秘

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播
    的头像 发表于 02-12 15:18 1274次阅读

    电容器深入研究:电路保护、滤波和能量存储

    校参加了一些课程,并获得了一些关于何时使用电容器以及它们如何工作的真实示例。从电路保护到滤波,从能量存储到传感,我正在深入研究简单而复杂的电容器世界。 这些东西是如何运作的? 事实上,构成电容器的只是由绝缘体隔开的两个导体。
    的头像 发表于 01-25 15:13 923次阅读
    电容器<b class='flag-5'>深入研究</b>:电路保护、滤波和能量存储

    神经网络理论研究的物理学思想介绍

    本文主要介绍神经网络理论研究的物理学思想 神经网络在当今人工智能研究和应用中发挥着不可替代的作用。它是人类在理解自我(大脑)的过程中产生的副产品,以此副产品,人类希望建造一个机器智能来实现机器文明
    的头像 发表于 01-16 11:16 1305次阅读
    神经<b class='flag-5'>网络理论研究</b>的物理学思想介绍

    微透镜阵列后光传播研究

    传播进行模拟。在这个应用案例中,我们将分别研究元件后近场、焦区以及远场特性。 2.系统配置 ** 3.系统建模模块-组件 ** 4.总结—组件 …… 仿真结果 1.场追迹结果—近场 2.场追迹结果—焦平面 ** 3.场追迹结果—远场
    发表于 01-08 08:56

    通过微透镜阵列的传播

    使用最新发布的版本中引入的一个新的MLA组件来设置和模拟这样的系统,允许对微透镜组件后面的近场以及远场和焦点区域的传输场进行彻底的研究。 微透镜阵列后光传播研究 本用例研究微透镜阵
    发表于 01-08 08:49

    非球面透镜背后的焦点研究

    **摘要 ** 高功率激光二极管经常在两个方向上表现出不对称的发散和散光。此案例在VirtualLab Fusion中研究了激光二极管首先被物镜准直,然后被非球面透镜聚焦后焦点区域的场的演变。与没有
    发表于 12-17 08:54

    通过微透镜阵列的传播

    使用最新发布的版本中引入的一个新的MLA组件来设置和模拟这样的系统,允许对微透镜组件后面的近场以及远场和焦点区域的传输场进行彻底的研究。 微透镜阵列后光传播研究 本用例研究微透镜阵
    发表于 12-11 11:32