0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度剖析USB设备端驱动框架

strongerHuang 来源:漫谈嵌入式 作者:漫谈嵌入式 2021-06-07 14:12 次阅读

hello 大家好,今天带领大家学习一下USB设备端驱动

内核版本:4.4.94

1. Linux USB 子系统在介绍设备端驱动前,我们先来看看 Linux USB子系统。这里的子系统是相对于整个Linux kernel 来说的,而非单一设备。从整体概括了USB主机端和设备端的通信框架。

Linux kernel 中早已集成了较为完善的USB协议栈,由于其规模庞大,包含多个类别的设备驱动,所以Linux系统中的USB协议栈也被称为USB子系统。

1.1 主机端

主机端,简化抽象三层:

各种类设备驱动:mass sotrage, CDC, HID等

USB 设备驱动:USB 核心处理

主机控制器驱动:不同的USB主机控制器(OHCI/EHCI/UHCI),抽象为HDC。

1.2 设备端

设备端,也抽象为三层:

设备功能驱动:mass sotage , CDC, HID 等,对应主机端的类设备驱动

Gadget 设备驱动:中间层,向下直接和UDC通信,建立链接;向上提供通用接口,屏蔽USB请求以及传输细节。

设备控制器驱动:UDC驱动,直接处理USB设备控制器。

2. USB 设备驱动2.1 gadget 驱动框架拆解1

我们将USB 设备端驱动拆解一下。

上文提到,Gadget 设备层起着至关重要的作用。为上层提供通用的驱动框架,与下层UDC通过Gadget Interface 建立联系。

其中Compsite Framwork 提供了一个通用的usb_gadget_driver 模板,包括各种方法供上层Function driver 使用。(driver/usb/gadget/compsite.c)

从上图我们可以看出,对于USB设备端驱动开发而言,更多的关注的是Function driver这层。USB 控制相关过程,内核提供了一个中间层帮我们屏蔽掉了。

2.2 gadget 驱动框架拆解2

内核版本:Linux Kernel 4.4.94,我们以这个版本进行拆解分析

4.x 的内核相对于3.x的内核在gadget 驱动上分解的更加完善,显得目录结构,层次分明,分工合理,更便于理解。

相对于3.x 的版本,4.4.94这个内核,将原来的、driver/usb/gadget目录进行拆分。通用接口保持不变,比如compsite.c以及functions.c。将usb function driver 进行细分,分为legacy和functions。

有了这些背景,我们再看4.4.94这版内核,gadget驱动框架。

legacy:整个Gadget 设备驱动的入口。位于driver/usb/gadget/legacy下,里面给出了常用的usb类设备的驱动sample。其作用就是配置USB设备描述符信息,提供一个usb_composite_driver, 然后注册到composite层。

functions:各种usb 子类设备功能驱动。位于driver/usb/gadget/functions,里面也给出了对应的sample。其作用是配置USB子类协议的接口描述以及其他子类协议,比如uvc协议,hid等。

注意:对于一个compsite 设备一个有一个或者多个function,对应的也就有多个functions driver

从这张图上,有没有发现,设备端驱动开发似乎越来越简单了。没错,事实上,我们只需要根据legacy的源码,添加对应的usb设备描述符信息,以及其他若干配置即可。

换言之,我们只需要关心 legacy 这一丢丢就行,对于functions这层会根据业务需要略微调整,不过整体变动不大。

usb 驱动框架之所以复杂,除了需要研究各种复杂的协议,还融合了各种驱动,对于初学者来说,理解起来有点困难。事实上,光是legacy这里也包含其他驱动,比如webcam里有大名鼎鼎的 v4l2 驱动框架。

所以当我学习USB驱动框架的时候,一定要抓大放小,【把握主要脉络,忽略细节】。当我们把一个复杂的驱动逐一拆解的话,其实发现,就没有那么可怕了。

2.3 usb compsite 设备构建

为了便于理解,我们来简单了解一个usb compsite 设备的构建过程:

假设构建一个usb 复合设备,需要支持uac, uac, hid 三个功能其驱动框架。

首先,我们需要一个驱动入口 legacy,用来配置设备描述信息,支持的协议等

然后添加一个配置支持多种接口,这里支持uvc uac hid, 每个接口对应一个functions driver

最后我们把它注册到compsite 层

对于functions driver 有个usb function driver list,在内核注册function driver 时会自动添加到一个链表上。functions.c 就是用来管理所有的function drivers

3. USB gadget 驱动剖析3.1 相关数据结构

在梳理整个框架前我们先梳理一下几个重要的数据结构,从下到上依次介绍:

usb_udc:

udc 使用,内嵌usb_gadget_driver 和 usb_gadget

struct usb_udc {

struct usb_gadget_driver *driver;

struct usb_gadget *gadget;

struct device dev;

struct list_head list;

bool vbus;

};

usb gadget:

usb 底层操作,包括udc,端点请求等。

struct usb_gadget {

struct work_struct work; /* 工作队列 */

struct usb_udc *udc; /* udc */

/* readonly to gadget driver */

const struct usb_gadget_ops *ops; /*gadget 设备操作函数集*/

struct usb_ep *ep0; /* 控制端点,只对setup包响应*/

struct list_head ep_list; /* 将设备的所有端点连成链表,ep0不在其中 */

enum usb_device_speed speed; /* 高速、全速和低速 */

enum usb_device_speed max_speed; /* 最大速度 */

enum usb_device_state state;

const char *name;

struct device dev;

unsigned out_epnum; /* out ep number */

unsigned in_epnum; /* in ep number */

struct usb_otg_caps *otg_caps;

unsigned sg_supported:1;

unsigned is_otg:1;

unsigned is_a_peripheral:1;

unsigned b_hnp_enable:1;

unsigned a_hnp_support:1;

unsigned a_alt_hnp_support:1;

unsigned quirk_ep_out_aligned_size:1;

unsigned quirk_altset_not_supp:1;

unsigned quirk_stall_not_supp:1;

unsigned quirk_zlp_not_supp:1;

unsigned is_selfpowered:1;

unsigned deactivated:1;

unsigned connected:1;

};

usb_gadget_driver:

usb_gadget_driver - driver for usb ‘slave’ devices. usb 从设备驱动通用结构。

作用:提供一个通用的usb gadget driver 模板,向下注册到udc,向上给functions driver提供bind 回调等。

关注:bind 回调、function 驱动名、setup 处理请求

struct usb_gadget_driver {

char *function; /* String describing the gadget‘s function */

enum usb_device_speed max_speed; /* Highest speed the driver handles */

int (*bind)(struct usb_gadget *gadget, /* the driver’s bind callback */

struct usb_gadget_driver *driver);

void (*unbind)(struct usb_gadget *);

int (*setup)(struct usb_gadget *, /* 处理ep0 request */

const struct usb_ctrlrequest *);

void (*disconnect)(struct usb_gadget *);

void (*suspend)(struct usb_gadget *);

void (*resume)(struct usb_gadget *);

void (*reset)(struct usb_gadget *);

/* FIXME support safe rmmod */

struct device_driver driver;

};

usb_composite_driver:

usb_composite_driver ,设备驱动的入口,用来管理设备配置信息,保存设备描述符。

重点:关注 bind 方法。

struct usb_composite_driver {

const char *name; /* 驱动名字 */

const struct usb_device_descriptor *dev ; /* 设备描述符 */

struct usb_gadget_strings **strings;

enum usb_device_speed max_speed;

unsigned needs_serial:1;

int (*bind)(struct usb_composite_dev *cdev); /* bind 方法 */

int (*unbind)(struct usb_composite_dev *);

void (*disconnect)(struct usb_composite_dev *);

/* global suspend hooks */

void (*suspend)(struct usb_composite_dev *);

void (*resume)(struct usb_composite_dev *);

struct usb_gadget_driver gadget_driver; /* usb gadget driver */

};

usb_composite_dev:

内嵌gadget对象,以及usb 设备的一些配置和请求,主要用于初始化。

struct usb_composite_dev {

struct usb_gadget *gadget;

struct usb_request *req;

struct usb_request *os_desc_req;

struct usb_configuration *config; /* usb 配置信息 */

/* OS String is a custom (yet popular) extension to the USB standard. */

u8 qw_sign[OS_STRING_QW_SIGN_LEN];

u8 b_vendor_code;

struct usb_configuration *os_desc_config;

unsigned int use_os_string:1;

/* private: */

/* internals */

unsigned int suspended:1;

struct usb_device_descriptor desc; /* 设备描述符 */

struct list_head configs;

struct list_head gstrings;

struct usb_composite_driver *driver; /* composite driver */

u8 next_string_id;

char *def_manufacturer;

/* the gadget driver won‘t enable the data pullup

* while the deactivation count is nonzero.

*/

unsigned deactivations;

/* the composite driver won’t complete the control transfer‘s

* data/status stages till delayed_status is zero.

*/

int delayed_status;

/* protects deactivations and delayed_status counts*/

spinlock_t lock;

unsigned setup_pending:1;

unsigned os_desc_pending:1;

};

3.2 驱动剖析

为一个通用的usb gadget 驱动剖析,框图中只列出了两个function,如果有多个function可以继续添加。关于udc控制器部分,,没有继续画下去,注意我们始终保持一个原则,【抓大放小】,把握重要的脉络即可。

分层分块

上下分层,左右分离的思想。

设备功能驱动

legacy 驱动入口

functions 驱动实现

Gadget 设备层:最重要的是compsite_bind 方法,承上启下的作用。

udc 设备控制器层。usb 协议的真正处理。

驱动走向

向下:usb_composite_driver -》 usb_gadget_driver-》usb_udc

向上回调:udc_bind_to_driver -》 composite_bind -》 webcam_bind其中其主要作用的两个结构就是usb_gadget_driver 和 usb_compsite_dev。前者向下注册到udc list 里面,与udc控制器建立绑定关系;后者向上提供接口,供上层配置usb 设备的各种functions 和其他配置信息。

代码分析

注册usb_composite_driver

module_usb_composite_driver(webcam_driver)

module_driver(webcam_driver, usb_composite_probe,

usb_composite_unregister)

usb_composite_probe

usb_composite_probe(webcam_driver);

driver-》gadget_driver = composite_driver_template;

gadget_driver = &driver-》gadget_driver;

。。。

usb_gadget_probe_driver(composite_driver_template);

udc_bind_to_driver(udc, driver);

composite_driver_template-》bind(udc-》gadget, composite_driver_template);

usb_gadget_udc_start(udc);

composite_bind

composite_bind(udc-》gadget,composite_driver_template);

cdev-》gadget = gadget;

composite_dev_prepare(webcam_driver,cdev);

cdev-》req = usb_ep_alloc_request(gadget-》ep0, GFP_KERNEL); /* 申请端点0 */

cdev-》req-》complete = composite_setup_complete;

cdev-》driver = webcam_driver;

usb_ep_autoconfig_reset(gadget);

webcam_driver-》bind(cdev);

webcam_bind

webcam_bind(cdev);

usb_get_function_instance(“uvc”);

try_get_usb_function_instance(“uvc”);

uvc_alloc_inst();

usb_add_config();

webcam_config_bind();

usb_get_function();

usb_add_function();

others_config_bind();

其他

关于function driver 我们这里没有详细介绍,这个框图只是一个通用的usb 设备驱动框架图,对于具体的usb function driver 我们这里没有做具体分析。

以f_uvc简单举例,详细过程见内核源码。

DECLARE_USB_FUNCTION_INIT(uvc, uvc_alloc_inst, uvc_alloc);

DECLARE_USB_FUNCTION_INIT(uvc, uvc_alloc_inst, uvc_alloc);

usb_function_register(&uvcusb_func);

list_for_each_entry(fd, &func_list, list)

list_add_tail();

DECLARE_USB_FUNCTION_INIT

一个通用的驱动模板,用来注册usb_function_driver,并添加到func_list上。

#define DECLARE_USB_FUNCTION(_name, _inst_alloc, _func_alloc)

static struct usb_function_driver _name ## usb_func = {

.name = __stringify(_name),

.mod = THIS_MODULE,

.alloc_inst = _inst_alloc,

.alloc_func = _func_alloc,

};

MODULE_ALIAS(“usbfunc:”__stringify(_name));#define DECLARE_USB_FUNCTION_INIT(_name, _inst_alloc, _func_alloc)

DECLARE_USB_FUNCTION(_name, _inst_alloc, _func_alloc)

static int __init _name ## mod_init(void)

{

return usb_function_register(&_name ## usb_func);

}

static void __exit _name ## mod_exit(void)

{

usb_function_unregister(&_name ## usb_func);

}

module_init(_name ## mod_init);

module_exit(_name ## mod_exit)

4. 总结本文以拆解的方式,逐步剥离 usb 设备端驱动框架,带领大家来重新认识usb 设备端驱动,同时给出了一个 compsite 设备的通用驱动框架模型,并从源码层次分析整个驱动流程。

有关USB 或者 其他类似的高级驱动,笔者有个建议,在初学时一点更要【把握主次,忽略细节】。

比如一个复合的usb 设备可能包含,uvc,uac,hid,等等,视频有uvc function驱动和v4l2驱动,uac也有相应的驱动,衍生展开会非常复杂。

所以当我们先掌握设备端驱动框架以及流程,等后面需要加入其他usb function 驱动再去研究其协议或者驱动,以及衍生驱动。

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • usb
    usb
    +关注

    关注

    59

    文章

    7422

    浏览量

    258047
  • Linux
    +关注

    关注

    87

    文章

    10988

    浏览量

    206725

原文标题:一文搞懂 USB 设备端驱动框架

文章出处:【微信号:strongerHuang,微信公众号:strongerHuang】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    深度剖析 IGBT 栅极驱动注意事项

    深度剖析 IGBT 栅极驱动注意事项
    的头像 发表于 11-24 14:48 299次阅读
    <b class='flag-5'>深度</b><b class='flag-5'>剖析</b> IGBT 栅极<b class='flag-5'>驱动</b>注意事项

    深度学习框架深度学习算法教程

    深度学习框架深度学习算法教程 深度学习是机器学习领域中的一个重要分支,多年来深度学习一直在各个领域的应用中发挥着极其重要的作用,成为了人工
    的头像 发表于 08-17 16:11 712次阅读

    深度学习cntk框架介绍

    深度学习cntk框架介绍  深度学习是最近几年来非常热门的话题,它正在彻底改变我们生活和工作的方式。随着越来越多的创新和发展,人工智能和机器学习的应用范围正在大大扩展。而对于深度学习这
    的头像 发表于 08-17 16:11 963次阅读

    深度学习框架连接技术

    深度学习框架连接技术 深度学习框架是一个能够帮助机器学习和人工智能开发人员轻松进行模型训练、优化及评估的软件库。深度学习
    的头像 发表于 08-17 16:11 476次阅读

    深度学习框架对照表

    深度学习框架对照表  随着人工智能技术的发展,深度学习正在成为当今最热门的研究领域之一。而深度学习框架作为执行
    的头像 发表于 08-17 16:11 488次阅读

    深度学习算法库框架学习

    深度学习算法库框架学习 深度学习是一种非常强大的机器学习方法,它可以用于许多不同的应用程序,例如计算机视觉、语言处理和自然语言处理。然而,实现深度学习技术需要使用一些算法库
    的头像 发表于 08-17 16:11 434次阅读

    深度学习框架tensorflow介绍

    深度学习框架tensorflow介绍 深度学习框架TensorFlow简介 深度学习框架Tens
    的头像 发表于 08-17 16:11 1424次阅读

    深度学习框架的作用是什么

    深度学习框架的作用是什么 深度学习是一种计算机技术,它利用人工神经网络来模拟人类的学习过程。由于其高度的精确性和精度,深度学习已成为现代计算机科学领域的重要工具。然而,要在
    的头像 发表于 08-17 16:10 1160次阅读

    深度学习框架区分训练还是推理吗

    深度学习框架区分训练还是推理吗 深度学习框架是一个非常重要的技术,它们能够加速深度学习的开发与部署过程。在
    的头像 发表于 08-17 16:03 1027次阅读

    深度学习框架是什么?深度学习框架有哪些?

    深度学习框架是什么?深度学习框架有哪些?  深度学习框架是一种软件工具,它可以帮助开发者轻松快速
    的头像 发表于 08-17 16:03 1750次阅读

    深度学习框架pytorch入门与实践

    深度学习框架pytorch入门与实践 深度学习是机器学习中的一个分支,它使用多层神经网络对大量数据进行学习,以实现人工智能的目标。在实现深度学习的过程中,选择一个适用的开发
    的头像 发表于 08-17 16:03 1195次阅读

    Linux USB设备驱动模型查看

    1. BUS/DEV/DRV 模型 "USB 接口"是逻辑上的 USB 设备 ,编写的 usb_driver 驱动程序,支持的是"
    的头像 发表于 07-17 17:38 588次阅读
    Linux <b class='flag-5'>USB</b><b class='flag-5'>设备</b><b class='flag-5'>驱动</b>模型查看

    基于DWC2的USB驱动开发-设备驱动框架

    本文转自公众号,欢迎关注 基于DWC2的USB驱动开发-设备驱动框架 (qq.com) 一.前言 从软件顶层,从数据流的角度来看
    的头像 发表于 07-16 15:56 666次阅读
    基于DWC2的<b class='flag-5'>USB</b><b class='flag-5'>驱动</b>开发-<b class='flag-5'>设备</b>类<b class='flag-5'>驱动</b><b class='flag-5'>框架</b>

    Linux Regmap 驱动框架

    1、regmap 框架结构 regmap 驱动框架如下图所示: regmap 框架分为三层: ①、底层物理总线:regmap 就是对不同的物理总线进行封装,目前 regmap 支持的物
    的头像 发表于 07-06 17:29 739次阅读
    Linux Regmap <b class='flag-5'>驱动</b><b class='flag-5'>框架</b>

    人工智能深度学习的框架简述

    深度学习框架是用于开发和运行人工智能算法的平台,它为软件人员开发人工智能提供了模块化的基础,一般提供数据输人、编写神经网络模型、训练模型、硬件驱动和部署等多种功能。
    的头像 发表于 05-16 10:07 1401次阅读
    人工智能<b class='flag-5'>深度</b>学习的<b class='flag-5'>框架</b>简述