0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高斯光学,理想的光学系统

新机器视觉 来源:科普中国 作者:科普中国 2021-06-01 15:52 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

引言

所谓的理想光学系统,就是对足够大空间内的各个点能以足够宽光束成完善像、理想像的光学系统。

1

理想光学系统

高斯光学(Gaussian optics)是指1841年C.高斯建立的研究理想光学系统的几何光学理论。它适用于任何结构的光学系统,但所研究的光线必须满足近轴条件。

所谓近轴条件,指的是光线与系统光轴的夹角α的正弦值可用角值(单位为弧度)代替,即sinα≈tanα≈α,cosα≈1。为便于一般地了解光学系统的成像性质和规律,在研究近轴区成像规律的基础上建立了理想光学系统的光学模型。

理想光学系统将物空间的同心宽光束转换到像空间的同心光束,这种从一个空间变换到另一个空间的情况,在数学上可以归结成“共线变换”或“共线成像”的问题,这种共轴理想光学系统理论是由高斯建立起来的,因此人们也把理想光学系统理论称为高斯光学。

2

物像关系的特性

1、点成点像:即对于物空间的每一点,在像空间必有一个点与之相对应,且只有一个点与之对应,这样的两个对应点称为物像空间的共轭点(如下图中的A点和A′点)。

2、线成线像:即对于物空间的每一条直线,在像空间必有一条直线与之相对应,且只有一条直线与之对应,这样的两条对应直线称为物像空间的共轭线(如下图中的BC和B′C′)。

3、平面成平面像:即物空间的每一个平面,在像空间必有一个平面与之相对应,且只有一个平面与之对应,这样的两个对应平面称为物像空间的共轭面(如下图中的PQ面和P′Q′面)。

由此推广,如果物空间上任意一点D位于直线BC上,那么其在像空间的共轭点D′也必位于共轭线B′C′上。同样,物空间中的一个同心光束必对应于像空间中的另一同心光束。上述这种点对点、直线对直线、平面对平面的成像,称为共线成像。

pIYBAGC154-AKFsRAACAHu0Ao8o738.png

3

基点 基面

如下图所示,O1和Ok两点分别是理想光学系统第一面和最后一面的顶点,FO1OkF′为光轴。物空间的一条平行于光轴的直线AE1经光学系统折射后,其折射光线GkF′交光轴于F′点,另一条物方光线FO1与光轴重合,其折射光线OkF′无折射地仍沿光轴方向射出。

由于像方GkF′、OkF′分别与物方AE1、FO1相共轭,因此,交点F′为AE1和FO1交点(位于物方无穷远的光轴上)的共轭点,所以F′是物方无穷远轴上点的像,所有其它平行于光轴的入射光线均会聚于点F′,点F′称为光学系统的像方焦点(或称后焦点、第二焦点)。显然,像方焦点是物方无限远轴上点的共轭点。

pIYBAGC154-Adzc7AACJEIyN5t8962.png

基点 基面

同理,点F称为光学系统的物方焦点(或称前焦点、第一焦点),它与像方无穷远轴上点相共轭。任意一条过F点的入射光线经理想光学系统折射后,出射光线必平行于光轴。

通过像方焦点F′且垂直于光轴的平面,称为像方焦平面(像方焦面);通过物方焦点F且垂直于光轴的平面,称为物方焦平面(物方焦面)。

显然,像方焦平面的共轭面在无穷远处;同样,物方焦平面的共轭面也在无穷远处。像方焦平面上任何一个物点发出的光束,经理想光学系统出射后必为一平行光束;任何一束入射的平行光,经理想光学系统折射后,必会聚于像方焦平面上的某一点。

必须指出,焦点和焦面是理想光学系统的一对特殊的点和面。物方焦点F和像方焦点F′彼此之间不共轭,同样,物方焦平面和像方焦平面也不共轭。

如下图所示,O1和Ok两点分别是理想光学系统第一面和最后一面的顶点,FO1OkF′为光轴。物空间的一条平行于光轴的直线AE1经光学系统折射后,其折射光线GkF′交光轴于F′点,另一条物方光线FO1与光轴重合,其折射光线OkF′无折射地仍沿光轴方向射出。由于像方GkF′、OkF′分别与物方AE1、FO1相共轭,因此,交点F′为AE1和FO1交点(位于物方无穷远的光轴上)的共轭点,所以F′是物方无穷远轴上点的像,所有其它平行于光轴的入射光线均会聚于点F′,点F′称为光学系统的像方焦点(或称后焦点、第二焦点)。显然,像方焦点是物方无限远轴上点的共轭点。

如下图所示,延长入射光线AE1和出射光线GkF′,得到交点Q′;同样,延长入射光线BEk和G1F,可得交点Q。

设光线AE1和BEk的入射高度相同,且都在子午面内。显然点Q和点Q′是一对共轭点。点Q是光线AE1和FQ交成的“虚物点”;点Q′是光线BEk和GkF′交成的“虚像点”。

过点Q和点Q′作垂直于光轴的平面QH和Q′H′,则这两个平面亦相互共轭。由图可知,位于这两个平面内的共轭线段QH和Q′H′具有相同的高度,且位于光轴的同一侧,故其垂轴放大率β =+1。我们称垂轴放大率为+1的这一对共轭面为主平面,其中的QH称为物方主平面(或前主面、第一主面),Q′H′称为像方主平面(或后主面、第二主面)。

物方主平面QH与光轴的交点H称为物方主点,像方主平面Q′H′与光轴的交点H′称为像方主点。

pIYBAGC154-AZnrvAADarch9xP8290.png

基点 基面

一对主点和一对焦点构成了光学系统的基点,一对主面和一对焦面构成了光学系统的基面,它们构成了一个光学系统的基本模型(下图所示)。

对于理想光学系统,不管其结构(r,d,n)如何,只要知道其焦距值和焦点或主点的位置,其性质就确定了。

pIYBAGC154-AdDwTAAAlUza5OIs352.png

参考文献:

【1】施特格。 机器视觉算法与应用[M]。 清华大学出版社, 2008.

【2】理想光学系统。百度百科

【3】工程光学(六)——几何光学(进阶).Tyalmath 。知乎

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光学系统
    +关注

    关注

    5

    文章

    260

    浏览量

    19024

原文标题:【视觉知识】高斯光学,理想的光学系统

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    VirtualLab:光学系统的三维可视化

    透视 光线视图 多波长的光线视图 对于具有多波长或多模光源的光学系统,也可以通过使用波长的真实颜色或颜色表来根据其特定的波长或模式来描述光线。 理想反射光栅偶极子——第一级次 视图工具 位置提示 为了提高易用性,我们还想强调一些额外的特性。 快速访问提示
    发表于 05-30 08:45

    VirtualLab:用于微结构晶片检测的光学系统

    各种不同的组件中,具体取决于预期用途。在这种情况下,我们将堆栈加载到一般光学设置中的一个光栅组件中,以便模拟整个系统。有关详细信息,请参阅:用于通用光学系统的光栅元件 微结构晶片的角度响应 该光栅组件
    发表于 05-28 08:45

    OCAD应用:单反射镜扫描光学系统初始结构设计

    图1.带有端部反射镜及保护玻璃的单反射镜扫描系统示意图 单反射镜扫描光学系统往往多设在光学系统端部用以扫描物方视场,故有常称端部反射镜。由于具有单次反射面的反射棱镜也具有反射镜的功能,也经常
    发表于 05-27 08:44

    OCAD应用:利用OCAD进行一般光学系统的设计

    填写完对光学系统的设计技术要求之后就可以在窗体右侧的绘图框内绘制光学系统方案草图。绘图框的基本尺寸默认为一张横排的A4图纸。如果根据系统总体尺寸的要求需要调整绘图框图纸图幅的尺寸,可以利用界面是文字
    发表于 05-23 08:51

    PanDao:光学设计中的光学加工链建模

    现代光学系统中,随着技术的快速多样化和专业化,我们面临着在高度专业化的个人、过程和机器之间进行可靠通信的需要。从最初的想法到最终的光学系统,一般会涉及四个方面:从(a)想要将光用作工具的客户开始,然后
    发表于 05-12 08:53

    PanDao:光学制造链设计

    要将光作为工具加以利用,例如在黑暗中看清事物、探测外太空的岩石或人体肾脏中的结石,就需要借助精密的光学系统,如复杂的汽车前灯、望远镜或内窥镜。随着光学工具使用精度的迅速提升,光学系统的质量也必须随之
    发表于 05-12 08:51

    PanDao:简化光学元件制造流程

    从初始设计到最终量产,光学系统的制造链在目前的技术条件下,依旧是一个容易产生误解的领域。 这一观点由瑞士东部应用科技大学光子学系统制造部门负责人、欧洲光学学会工业咨询委员会主席奥利弗·费恩勒
    发表于 05-08 08:46

    PanDao:光学设计中的制造风险管理

    摘要 :本文系统阐述为特定光学元件确定最佳光学制造技术(OFT)组合的策略,并将应用到光学制造链的构建中。为此,研究团对光学系统进行了分类,
    发表于 05-07 09:01

    PanDao:光学制造过程建模

    》将光定义为来自太阳、灯具等的能量,使人能够观察到物体。为达到有效观测,需要构建不同层级的光学系统——从袖珍手电筒到航海灯塔,或从简易放大镜到尖端光刻成像系统光学系统的生成是一个四阶段多方协同的过程
    发表于 05-07 08:54

    VirtualLab Fusion应用:光学系统的3D可视化

    摘要 为了从根本上了解光学系统的特性,对其组件进行可视化并显示光的传播情况大有帮助。为此,VirtualLab Fusion 提供了显示光学系统三维可视化的工具。这些工具还可用于检查元件和探测器
    发表于 04-02 08:42

    VirtualLab Fusion应用:光学系统中的热透镜

    现代技术在材料加工领域的出现,使得高功率激光源在光学系统中的使用频率大大增加。高能源产生的大量热量导致了几何形状的变形和系统光学元件折射率的调制,这将影响它们的光学特性。在Virtu
    发表于 03-13 08:57

    VirtualLab Fusion应用:对光学系统中亚波长结构的严格模拟

    光学设计软件VirtualLab Fusion中实现的建模技术的交互性意味着其用户可以完全灵活地在精度和速度之间找到始终相关的折衷方案。这也适用于模拟光通过亚波长结构传播:可以只为光学系统中表
    发表于 03-04 09:59

    离轴光学系统的优势

    离轴光学系统具有多个显著的优势,主要体现在以下几个方面: 1.更广阔的视场 离轴光学系统通过使用非对称的光学元件,能够显著扩大视场范围,使得观察者可以获得更广阔的视野。这对于航天、天文、航空等领域
    的头像 发表于 02-12 06:15 692次阅读
    离轴<b class='flag-5'>光学系统</b>的优势

    反射光栅的光学系统结构中光栅系统的配置与优化

    “Littrow结构”是指那些包含反射光栅的光学系统,其中光栅方向被设置为可以使工作阶(通常是第一衍射阶)沿着入射光束的方向返回。这可以用于各种不同的应用,例如,在激光谐振器的背景下,光栅可以
    发表于 01-11 13:19

    光学系统的3D可视化

    **摘要 ** 为了从根本上了解光学系统的特性,对其组件进行可视化并显示光的传播情况大有帮助。为此,VirtualLab Fusion 提供了显示光学系统三维可视化的工具。这些工具还可用于检查元件
    发表于 01-06 08:53