0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于光学神经网络的机器视觉系统的缺点与应用

中科院长春光机所 来源:中国光学 作者:李竞曦 2021-04-08 11:43 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在自动化和智能技术发展日益成熟的今天,机器视觉系统(名词解释)在许多领域被广泛应用,包括自动驾驶汽车、智能制造、自动化手术和生物医学成像等。

这些机器视觉系统大多使用基于普通光学镜头模组的相机,在拍摄通常高达具有数百万像素的图像或视频后,通常将其馈送到如GPU等数字逻辑处理单元从而来执行一定的机器学习任务,例如物体识别、分类和场景分割等。

艺术效果图:基于光学神经网络的机器视觉系统

这种经典的机器视觉架构具有如下几个方面的缺点:

第一,高像素传感器拍摄带来大量信息使其难以实现极高速的图像或视频数字化存储和分析,尤其在使用移动设备和电池供电的设备时更是带来了能耗和性能的平衡问题;

第二,所捕获的图像通常包含许多对机器学习任务无用的冗余信息,带来了后端处理器某种程度上的性能负担,和资源浪费,从而导致在功耗和内存需求方面效率低下。

第三,在可见光的波长以外的电磁波段制造高像素数图像传感器(如手机相机中的传感器)具有很大的挑战性,且其成本十分昂贵,因而也限制了机器视觉系统在更长波段(如太赫兹)上的应用。

最近,加州大学洛杉矶分校(UCLA)的研究人员开发了一种新的单像素机器视觉系统,通过引入光学神经网络(名词解释)的方式规避了传统机器视觉系统的诸多缺点。

图1 来自加州大学洛杉矶分校的研究人员发明了一个新型单像素机器视觉系统,该系统可以将物体的空域信息编码为功率谱,从而实现对图像进行分类和重建。

该成果以Spectrally encoded single-pixel machine vision using diffractive networks为题发表在Science Advances。

研究人员借助深度学习技术,设计了一个由多个衍射层组成的衍射光学神经网络(Diffractive Optical Neural Networks)(拓展阅读),这些衍射层由计算机自动优化设计,可将经过的输入光场调制成一定的目标分布,从而能够执行计算和统计推断任务。

与常规的基于镜头模组的相机不同,该衍射光学神经网络以被宽带光照明的物体作为其输入,将物体的空域特征信息提取并编码到衍射光的光谱上,而后光谱信号由具有频谱探测能力的单像素超快传感器所收集。通过将物体对应的不同的类别分配给不同波长的光频谱分量,该系统仅使用单像素传感器探测到的输出光谱即可自动对输入对象完成分类,从而无需图像传感器阵列和后端数字处理。这种框架实现了全光学推理和机器视觉,在帧速率、内存需求和功耗效率方面具有明显优势,这些特点对于移动计算(名词解释)应用而言尤为重要。

图2. 该系统使用宽带光对物体进行照明。系统分类结果取决于单像素传感器测得的输出光功率谱上10个波长位置上最强的信号,其波长对应的类别即是分类预测结果。功率谱信号还可以输入到数字神经网络中被用于重建物体本身的图像。

为验证这一概念,研究人员通过使用单像素传感器和3D打印的衍射层对使用手写数字图像数据集(MNIST)的所构建的物体进行分类,在实验中证明了该框架在太赫兹波段下的性能。研究者基于提前选定的10个波长对实验系统进行了设计,这10个波长被逐一分配给输入物的不同类别(对应手写数字的0到9),对物的分类结果取决于传感器输出功率谱上10个波长位置上信号最强者的波长对应的类别。

实验系统中的单像素探测方案基于太赫兹时域光谱术实现,照明光为极短的太赫兹脉冲,网络的推理以光速在瞬时间完成。

最终,该系统在手写数字分类任务中实现了超过96%的分类精度,实验结果也与数值模拟非常吻合,证明了该单像素机器视觉框架在构建低延迟、高效的机器学习系统方面的可行性。除物体分类外,研究人员还将此衍射神经网络的输出与一个简单的全连接数字神经网络相连接,仅通过功率谱上10个波长处的信号强度来快速重建此输入物的图像,从而实现了图像的重建或“解压缩”。

总而言之,这种单像素对象分类和图像重建框架可以为新的机器视觉系统的开发铺平道路。该系统具有低像素数、低延迟、低功耗和低成本的特点,以高效、节省资源的独特优势通过将物体信息进行频谱编码来实现特定的推理任务,有望广泛应用于移动计算、边缘计算(名词解释)等领域。

此外,该新框架还可以扩展到各种光谱域测量系统,例如光学相干断层扫描、红外波段成像等,有助于构建基于衍射神经网络的光谱和空间信息编码集成的新型3D传感和成像方式。
编辑:lyn

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106777
  • 机器视觉系统

    关注

    1

    文章

    86

    浏览量

    19503
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123896

原文标题:机器视觉技术 | 基于光谱编码的传感与成像

文章出处:【微信号:cas-ciomp,微信公众号:中科院长春光机所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    机器视觉系统中工业相机的常用术语解读

    1、机器视觉系统机器视觉系统machinevisionsystem是通过对声波、电磁辐射等时空模式进行探测及感知,对所获取的图像进行自动处理、分析和测量,做出定性解释和定量分析,得到有
    的头像 发表于 10-31 17:34 986次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉系统</b>中工业相机的常用术语解读

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 672次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“神经网络”、“黑箱”、“标注”等术语。这些概念对非专业
    的头像 发表于 09-10 17:38 677次阅读
    如何在<b class='flag-5'>机器</b><b class='flag-5'>视觉</b>中部署深度学习<b class='flag-5'>神经网络</b>

    机器视觉系统工业相机的成像原理及如何选型

    机器视觉系统是一种模拟人类视觉功能,通过光学装置和非接触式传感器获取图像数据,并进行分析和处理,以实现对目标物体的识别、测量、检测和定位等功能的智能化
    的头像 发表于 08-07 14:14 1010次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>视觉系统</b>工业相机的成像原理及如何选型

    神经网络专家系统在电机故障诊断中的应用

    摘要:针对传统专家系统不能进行自学习、自适应的问题,本文提出了基于种经网络专家系统的并步电机故障诊断方法。本文将小波神经网络和专家系统相结合
    发表于 06-16 22:09

    机器视觉系统中如何评价光源的好坏

    从对比度、鲁棒性、亮度、均匀性和可维护性五个方面探讨了光源在机器视觉系统中的重要性。
    的头像 发表于 04-14 13:38 501次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1301次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络
    的头像 发表于 02-12 15:36 1566次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1271次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化网络的输出误差。 二、深度学习的
    的头像 发表于 02-12 15:15 1338次阅读

    棱镜——机器视觉系统中常见的重要配件

    棱镜——机器视觉系统中常见的重要配件
    的头像 发表于 01-15 17:36 846次阅读
    棱镜——<b class='flag-5'>机器</b><b class='flag-5'>视觉系统</b>中常见的重要配件

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2239次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法

    基于光学衍射神经网络的轨道角动量复用全息技术的设计与实验研究

    随着神经网络的发展,光学神经网络(ONN)的研究受到广泛关注。研究人员从衍射光学、散射光、光干涉以及光学傅里叶变换等基础理论出发,利用各种
    的头像 发表于 12-07 17:39 3415次阅读
    基于<b class='flag-5'>光学</b>衍射<b class='flag-5'>神经网络</b>的轨道角动量复用全息技术的设计与实验研究