0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

新型电荷泵电路实现加倍提高电荷泵的应用性能

电子设计 来源:中国集成电路 作者:赵国光;李斌 2021-03-11 09:30 次阅读

1、引言

目前,电荷泵锁相环是所有锁相环中最受关注的一种,例如它在射频的频率合成器、数字电路中的时钟产生以及时钟恢复电路中都被广泛采用,这主要是因为电荷泵锁相环具有良好的跟踪能力和捕获能力。研究开发性能良好的电荷泵锁相环有着重要的现实意义。同时,CMOS工艺具有工作电压范围宽、静态功耗低、抗干扰能力强等优点,是当今集成电路制造业的主流工艺。因此,使用CMOS工艺设计的锁相环路应用范围越来越广,而电荷泵是电荷泵锁相环里面除VCO外最重要的电路模块,而电流失配、电荷共享、过冲和时钟馈通等现象一直限制着电荷泵性能的提高,因此研究性能良好的电荷泵有非常重要的现实意义。

2、传统电荷泵

2.1基本原理

图l是典型的电荷泵结构。此处电荷泵为两个受鉴频鉴相器(PFD)输出信号控制的开关电流源,它与后面的环路滤波器共同作用,将PFD的逻辑信号转化为电压信号,该电压信号进而调节压控振荡器的振荡频率。

新型电荷泵电路实现加倍提高电荷泵的应用性能

当鉴频鉴相器输出电压信号UP为高时,电荷泵上端开关导通,电荷泵将以电流Ip对滤波器充电。

当鉴频鉴相器输出电压信号DN为高,打开电荷泵下端开关,电荷泵以电流Ip对滤波器放电。因为这种结构的鉴频鉴相器通过电流充、放电来改变低通滤波器的电压Vout所以对Vout电压幅值没有限制。因此电荷泵锁相环的捕获范围很宽,直接由压控振荡器能够工作的频率范围来决定。同时,当电荷泵上下的开关都关断时,低通滤波器的电压可以保持Vout不变,而且UP和DN信号表征的是输入与输出之间的相差,UP和DN均为低电平说明鉴频鉴相器的输出相差为0。所以,这种结构的电荷泵和鉴频鉴相器具有锁定时相差为0的优点。

当鉴频鉴相器和电荷泵一同使用时,电路结构如图2所示。电路有充电、放电和保持三种状态。当QA=QB=0时,K1和K2关断,保持Vout不变。如果QA为高,QB为低,电容Cp通过I1充电。反之,如果QA为低,QB为高,Cp通过I2放电。因此,如果A超前B,QA连续产生脉冲,Vout值逐渐升高,呈阶梯形。I1和I2就分别为上述的UP和DOWN电流,通常取一样的值。虽然电路能正常工作,但也产生了下述的电荷共享问题。

2.2“电荷共享”问题

电荷泵的“电荷共享”是电荷泵的主要问题之一,问题来源于电流源漏端所存在的一定的电容间。其原理如图3所示,开关S1和S2都断开,那么M1使结点X放电到零电位,M2使结点Y充电到VDD。在下一个相位比较瞬间,开关S1和S2都导通,从而Vx的电压上升,Vy电压下降,如果忽略在开关S1和S2上的电压降,则有Vx一Vy一Vcont(图b),如果相位误差为零,而且且ID1=|ID2|,则在开关导通时,Vcont值将发生跳变。此时即使Cx=CY,VX和VY的变化量也不相等。例如,若Vcont比较高,则Vx变化量大而Vy变化量较小。这两者变化的差额必须由Cp来提供,从而导致Vcont跳动。

3. 抑制“电荷共享”的方法

上述电荷共享现象可以通过“自举”(bootstrapping)的办法来消除。

如图4所示,其思路就是在相位比较完后,将VX和VY的电位“固定”到Vcont。当S1和S2断开时,S3和S4导通,再用单位增益放大器将结点X和Y的电位保持在Vcont,在下一个相位比较瞬间,S1和S2导通,S3和S4断开,这时候VX和VY的电位都等于Vcont,所以在CP和X点、Y点的电容之间不会发生电荷共享。而新型低电荷共享的电荷泵就是这种结构的具体电路实现。

4、低电荷共享的新型电荷泵

图5是本文提出的新型电荷泵电路,它将单一晶体管的开关改为双向传输门,这使电流传输不受晶体管阈值电压的影响,并可扩大X、Y两点的电压跟随范围。用一个单端放大器构成负反馈,形成电压跟随器,偏置电流源同时为放大器提供尾电流。改进后的电荷泵同一般的电荷泵相比,多了一个跟随器,这个跟随器使得电流源在关断时,漏端电压能够跟随Vcont,这样当开关打开时,可以认为△v等于零,同时避免了两个电流源漏端寄生电容的电荷共享效应。否则会引起较大的上下电流不对称效应,增大锁相环的抖动。

5、传统电荷泵和新型电荷泵的对比

对比仿真采用GSMC0.18Dμm工艺库,在相同的尺寸和各种工艺角 TT、FF、SS,供电电压1.8v10%,温度0℃到125℃等仿真条件下进行,仿真软件为spectre和hspice。这里的传统电荷泵结构仅比上述的新型电荷泵少了右边的差动放大器。通过观察CPLL锁定时的压控振荡器的控制电压Vcont的波纹大小可初步比较得出电荷泵的性能,由于两者的抖动在本次中都很小(10ps数量级),所以肉眼不能从时钟信号观察出来。从图6和图7可以看出新型电荷泵的Vcont波纹的振幅约为4mV,仅为传统的电荷泵的振幅12mV的l/3,这减少的量主要是从抑制电荷共享而获得,另外两个波纹产生的原因是时钟馈通和电流过冲。更小的波纹将导致CPPLL的更小的抖动。

从表1的仿真结果可以知道,新型电荷泵由于结构上的改进,得到了比传统电荷泵更小的抖动和失配,由于增加了电压跟随电路,功耗会大一点。

我们阐述了一个低失配(mismatch2%)、低电荷共享的新型电荷泵,通过增加并不复杂的电路达到了加倍提高电荷泵性能的目的,这种电荷可广泛用于CPPLL中。

责任编辑:gt

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CMOS
    +关注

    关注

    58

    文章

    5154

    浏览量

    233348
  • 振荡器
    +关注

    关注

    28

    文章

    3518

    浏览量

    137639
  • PFD
    PFD
    +关注

    关注

    0

    文章

    11

    浏览量

    14360
收藏 人收藏

    评论

    相关推荐

    电荷泵工作原理

    电荷泵能够产生高于直流输入电压的直流输出电压,甚至可以反极性输出电压。 电路简化图如上,在一个工作周期内,前半个周期输入开关闭合时,输入电压对电容C1充电至输入值;在后半个周期内,输入开关断开,输出
    发表于 01-27 14:33

    电荷泵设计原理及在电路中的作用

    1、电荷泵原理电荷泵的基本原理是,电容的充电和放电采用不同的连接方式,如并联充电、串联放电,串联充电、并联放电等,实现升压、降压、负压等电压转换功能。上图为二倍升压电荷示,为最简单的
    发表于 10-22 15:20

    如何选择合适的电荷泵

    1、效率优先,兼顾尺寸  如果需要兼顾效率和占用的 PCB 面积大小时,可考虑选用电荷泵。例如电池供电的应用中,效率的提高将直接转变为工作时间的有效延长。通常电荷泵实现 90% 的峰
    发表于 11-22 21:23

    如何设置电荷泵的极性?

    如何设置电荷泵的极性?
    发表于 03-12 18:14

    基于电荷泵驱动LED

    利用电荷泵实现背光源的解决方案分析
    发表于 04-30 14:56

    提供低输入和输出噪声的新型电荷泵

    DN243新型电荷泵提供低输入和输出噪声
    发表于 06-27 08:22

    高效和极低噪声的新型降压电荷泵

    DN310新型降压电荷泵具有微小,高效和极低噪声
    发表于 08-08 12:49

    【每日电路赏析】实现电压升高的电荷泵电路

    也一并增加多次,每一级对应的是上一级的输出,所以总输出并不是简单的输入相乘。而且加入的层级越多,问题越严重。3.打造一个电荷泵电路我们这里要打造一个简单的三级电荷泵,并运用555定时器来实现
    发表于 10-08 15:28

    怎么理解过压保护芯片里电荷泵的作用?

    我看到有人把电荷泵接在NMOS的栅极,是为了提高VGS,以降低导通内阻。而图中把电荷泵接在NMOS的漏极,有什么作用呢?是用于控制VDS的电压?小白求指导
    发表于 12-24 12:05

    如何设计一种高性能CMOS电荷泵锁相环电路

    锁相环系统是什么工作原理?传统电荷泵电路存在的不理想因素有哪些?设计一种高性能CMOS电荷泵锁相环电路
    发表于 04-09 06:38

    电荷泵IC的应用

    请问,电荷泵IC在充电电路中的应用。
    发表于 05-28 19:07

    什么是电荷泵电荷泵有哪些特性?

    请问下什么是电荷泵电荷泵有哪些特性?
    发表于 07-21 09:06

    电荷泵电路的基本原理

    实现所需的开关操作。图1。简单的电荷泵电路示意图。图片由德州仪器公司提供通过交替地充放电电容器,电荷泵可以增加或减少给定的输入电压到所需的水平。从低层次的角度来看,
    发表于 06-14 10:17

    开关电源、电荷泵、LDO

    开关电源、电荷泵、LDODC-DC或者电荷泵电路效率要高于LDO或者其他线性的降压电路,有哪个了解比较深入,分析下效率高于LDO的原因
    发表于 10-19 19:12

    电荷泵解决方案

    电荷泵DC/DC转换器将是非常有效的,特别是这种做法消除了对电感器的需要。电荷泵解决方案的一个挑战就是它产生的噪声要高于电感式DC/DC转换器。某些应用设计人员解决这个问题的方法是,在电荷泵输出
    发表于 11-17 07:22