0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

1个AI模型=5辆汽车终身碳排量,AI为何如此耗能?

电子设计 来源:电子设计 作者:电子设计 2021-01-21 03:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

整理 | 弯月 责编 | 郑丽媛
出品 | CSDN(ID:CSDNnews)

根据最新的研究结果,训练一个普通的 AI 模型消耗的能源相当于五辆汽车一生排放的碳总量,而 BERT 模型的碳排放量约为 1400 磅二氧化碳,这相当于一个人来回坐飞机横穿美国。为何 AI 模型会如此费电,它们与传统的数据中心计算有何不同?

训练效率低下

传统数据中心负责处理的工作包括视频流,电子邮件和社交媒体。AI 所需的计算量则更多,因为它需要读取大量的数据、持续学习,直到完成训练。

与人类的学习方式相比,AI 的训练效率非常低下。现代 AI 使用人工神经网络,这是模拟人脑神经元的数学计算。每两个相邻神经元的连接强度都是神经网络上的一个参数,名叫权重。神经网络的训练则需要从随机权重开始,一遍遍地运行和调整参数,直到输出与正确答案一致为止。

常见的一种训练语言神经网络的方法是,从维基百科和新闻媒体网站下载大量文本,然后把一些词语遮挡起来,并要求 AI 猜测被遮挡起来的词语。刚开始的时候,AI 会全部搞错,但是,经过不断地调整后,AI 会逐渐学习数据中的模式,最终整个神经网络都会变得非常准确。

相信你听说过 BERT 模型,基于变换器的双向编码器表示技术(Bidirectional Encoder Representations from Transformers,简称 BERT),这是一项由 Google 提出的自然语言处理(NLP)的预训练技术。该模型使用了来自维基百科和其他文章的 33 亿个单词,而且在整个训练期间,BERT 读取了该数据集 40 次。相比之下,一个 5 岁的孩子学说话只需要听到 4500 万个单词,比 BERT 少3000倍。

寻找最佳结构

语言模型构建成本如此之高的原因之一在于,在开发模型期间,上述训练过程需要反复多次。因为研究人员需要将神经网络调整到最优,即确定神经元的个数、神经元之间的连接数以及各个权重。他们需要反复尝试很多组合,才能提高神经网络的准确度。相比之下,人类的大脑不需要寻找最佳结构,经过几亿年的进化,人类大脑已具备这种结构。

随着各大公司和学术界在 AI 领域的竞争愈演愈烈,不断提高技术水平的压力也越来越大。在自动翻译等难度巨大的任务中,如果能将准确度提高 1%,也将被视为重大的进步,可以作为宣传产品的筹码。然而,为了获得这 1% 的提升,研究人员需要尝试成千上万的结构来训练模型,直到找到最佳模型。

随着模型不断发展,模型的复杂度逐年攀高。另一款与 BERT 类似的最新语言模型 GPT-2,其神经网络包含 15 亿个权重。而 GPT-3 由于其高精度,引起了业界的轰动,但其权重高达 1750 亿个。

此外,AI 模型的训练需要在专用硬件(例如图形处理器)上进行,这些硬件的功耗普遍高于传统 CPU。如果你的笔记本电脑加载了优质的显卡,可以玩很多高端游戏,那么你肯定会注意到这台机器产生的热量也比普通电脑高很多。

所有这些都表明,开发先进的 AI 模型需要大量的碳排放量。除非我们能够利用百分百可再生能源,否则真的怀疑 AI 的进步与减少温室气体排放以及减缓气候变化,孰重孰轻?是否真的可以功过相抵?

最后,开发 AI 的耗资如此巨大,能够承担得起各项费用的公司与机构实在少之又少,最终究竟应该开发哪种模型的决定权无疑也落到了这群人的手中。

AI 模型训练应该适可而止

本文并不是要否定人工智能研究的未来,只不过在训练 AI 模型的时候,我们需要采用更高效的方法,而且应该做到适可而止。

随着 AI 模型训练方法的效率提升,相信训练的成本也会下降。同时,我们需要在训练模型的成本和使用模型的成本之间权衡取舍。例如,在 AI 模型准确度到达一定高度后,每提升 1% 都需要付出巨大的精力,而实际得到的收益却很少。不追求极致,更多地使用“适可而止”的模型,不仅可以降低碳排放量,而且也能为我们带来更大获益。

审核编辑 黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106803
  • AI
    AI
    +关注

    关注

    89

    文章

    38135

    浏览量

    296732
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    政策多次提及,零园区为何如此重要?氢能源如何进入?

    11月10日,《国家发展改革委、国家能源局关于促进新能源消纳和调控的指导意见》发布。意见指出,推进零园区建设。 这是2025年国家层面第三次明文支持零园区建设,不难看出国家的支持力度,那么,零园区
    的头像 发表于 11-12 15:16 205次阅读
    政策多次提及,零<b class='flag-5'>碳</b>园区<b class='flag-5'>为何如此</b>重要?氢能源如何进入?

    AI模型的配置AI模型该怎么做?

    STM32可以跑AI,这个AI模型怎么搞,知识盲区
    发表于 10-14 07:14

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片到AGI芯片

    复制人类智能的AI---AGI。 走向AGI的五层次发现阶段: ①L1,聊天机器人:具备基础的对话能力,能够理解和回应简单的文本输入 ②L2,推理者:具备基本的逻辑推理能力,能够分析复杂信息并进行推断
    发表于 09-18 15:31

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    和关联性 AI驱动科学:研究和模拟人类思维和认识过程。 本章节作者为我们讲解了第五范式,介绍了科学发现的一般方法和流程等。一、科学发现的5范式 第一范式:产生于公元1000年左右的阿拉伯世界和欧洲
    发表于 09-17 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的未来:提升算力还是智力

    、浪费资源与破坏环境 二、用小模型代替大模型 1、强化学习 2、指令调整 3、合成数据 三、终身学习与迁移学习 1
    发表于 09-14 14:04

    【「AI芯片:科技探索与AGI愿景」阅读体验】+第二章 实现深度学习AI芯片的创新方法与架构

    连接定义了神经网络的拓扑结构。 不同神经网络的DNN: 一、基于大模型AI芯片 1、Transformer 模型与引擎 1.1 Transformer
    发表于 09-12 17:30

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    的不同。随着AI热潮的兴起,大脑的抽象模型已被提炼成各种的AI算法,并使用半导体芯片技术加以实现。 而大脑是一由无数神经元通过突触连接而成的复杂网络,是极其复杂和精密的。大脑在本质上
    发表于 09-06 19:12

    关于NanoEdge AI用于n-Class的问题求解

    ,但把模型的静态库加到Keil5的工程中编译后运行在STM32F407G-DISC1的开发板上仿真测试时,我输入的数据不管怎么变,AI模型
    发表于 08-11 06:44

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    创新、应用创新、系统创新五部分,接下来一一解读。 算法创新 在深度学习AI芯片的创新上,书中围绕大模型与Transformer算法的算力需求,提出了一系列架构与方法创新,包括存内计算技术、基于开源
    发表于 07-28 13:54

    如何赋能医疗AI模型应用?

    “百模大战”。不仅如此,这些通用AI模型还逐渐渗透到各个垂直行业中,其中生命科学和医疗健康行业成为了拓展速度较快的一领域。从2023年2月至10月初,国内市场上
    的头像 发表于 05-07 09:36 525次阅读
    如何赋能医疗<b class='flag-5'>AI</b>大<b class='flag-5'>模型</b>应用?

    【「零基础开发AI Agent」阅读体验】+ 入门篇学习

    的是基础篇,主要从为什么要学习AI Agent和开发AI Agent的知识储备入手进行介绍。作为入门AI Agent的小白还是很有必要学习的。这里将一些重要观点作归纳
    发表于 05-02 09:26

    首创开源架构,天玑AI开发套件让端侧AI模型接入得心应手

    的自有模型移植,使首字词生态速度比云端方案提升70%,赋能绝影多模态智能座舱强大的端侧运行能力,让汽车拥有“有趣的灵魂”。 不仅如此,天玑AI开发套件已经接入NVIDIA TAO生态
    发表于 04-13 19:52

    训练好的ai模型导入cubemx不成功怎么处理?

    训练好的ai模型导入cubemx不成功咋办,试了好几个模型压缩了也不行,ram占用过大,有无解决方案?
    发表于 03-11 07:18

    AI Agent 应用与项目实战》----- 学习如何开发视频应用

    开发一视频内容生成Agent。 访问语聚AI平台官网 ,进行注册或登录。 在平台首页,了解语聚AI的功能和应用场景,特别是其支持的视频生成相关的AI
    发表于 03-05 19:52

    霍尔电流传感器的原边端如何接入AI模型

    霍尔电流传感器的原边端如何接入AI模型,以便AI分析问题解决问题?话题会不会太超前?现在正式AI风口啊,猪都要起飞了
    发表于 03-03 15:18