0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

NLP中的对抗训练到底是什么

深度学习自然语言处理 来源:深度学习自然语言处理 作者:李rumor 2021-01-18 17:17 次阅读

简介

对抗训练是一种引入噪声的训练方式,可以对参数进行正则化,提升模型鲁棒性和泛化能力。

对抗训练的假设是:给输入加上扰动之后,输出分布和原Y的分布一致

有监督的数据下使用交叉熵作为损失:

半监督数据下可计算KL散度:

扰动如何得来呢?这需要对抗的思想,即往增大损失的方向增加扰动

有监督下:

半监督下:

theta上面一个尖儿代表的是常数。目的是说在计算对抗扰动时虽然计算了梯度,但不对参数进行更新,因为当前得到的对抗扰动是对旧参数最优的。不理解的同学可以自己看下伪代码体会一下。

用一句话形容对抗训练的思路,就是在输入上进行梯度上升(增大loss),在参数上进行梯度下降(减小loss)。由于输入会进行embedding lookup,所以实际的做法是在embedding table上进行梯度上升。

接下来介绍不同的方法,后续方法优化的主要方向有两点:得到更优的扰动 & 提升训练速度

FGSM (Fast Gradient Sign Method): ICLR2015

FGSM是Goodfellow提出对抗训练时的方法,假设对于输入的梯度为:

那扰动肯定是沿着梯度的方向往损失函数的极大值走:

FGM (Fast Gradient Method): ICLR2017

FSGM是每个方向上都走相同的一步,Goodfellow后续提出的FGM则是根据具体的梯度进行scale,得到更好的对抗样本:

伪代码:

对于每个x: 1.计算x的前向loss、反向传播得到梯度 2.根据embedding矩阵的梯度计算出r,并加到当前embedding上,相当于x+r 3.计算x+r的前向loss,反向传播得到对抗的梯度,累加到(1)的梯度上 4.将embedding恢复为(1)时的值 5.根据(3)的梯度对参数进行更新

PGD (Projected Gradient Descent): ICLR2018

FGM直接通过epsilon参数一下子算出了对抗扰动,这样得到的可能不是最优的。因此PGD进行了改进,多迭代几次,慢慢找到最优的扰动。

引用[1]:

FGM简单粗暴的“一步到位”,可能走不到约束内的最优点。PGD则是“小步走,多走几步”,如果走出了扰动半径为epsilon的空间,就映射回“球面”上,以保证扰动不要过大

伪代码:

对于每个x: 1.计算x的前向loss、反向传播得到梯度并备份 对于每步t: 2.根据embedding矩阵的梯度计算出r,并加到当前embedding上,相当于x+r(超出范围则投影回epsilon内) 3.t不是最后一步:将梯度归0,根据1的x+r计算前后向并得到梯度 4.t是最后一步:恢复(1)的梯度,计算最后的x+r并将梯度累加到(1)上 5.将embedding恢复为(1)时的值 6.根据(4)的梯度对参数进行更新

可以看到,在循环中r是逐渐累加的,要注意的是最后更新参数只使用最后一个x+r算出来的梯度。

FreeAT (Free Adversarial Training): NIPS2019

从FGSM到PGD,主要是优化对抗扰动的计算,虽然取得了更好的效果,但计算量也一步步增加。对于每个样本,FGSM和FGM都只用计算两次,一次是计算x的前后向,一次是计算x+r的前后向。而PGD则计算了K+1次,消耗了更多的计算资源。因此FreeAT被提了出来,在PGD的基础上进行训练速度的优化。

FreeAT的思想是在对每个样本x连续重复m次训练,计算r时复用上一步的梯度,为了保证速度,整体epoch会除以m。r的更新公式为:

伪代码:

初始化r=0对于epoch=1...N/m: 对于每个x: 对于每步m: 1.利用上一步的r,计算x+r的前后向,得到梯度 2.根据梯度更新参数 3.根据梯度更新r

缺点:FreeLB指出,FreeAT的问题在于每次的r对于当前的参数都是次优的(无法最大化loss),因为当前r是由r(t-1)和theta(t-1)计算出来的,是对于theta(t-1)的最优。

注:

1.论文中提供伪代码,但源码中好像对1步输入做了归一化论文中并没有提到

2.个人认为可以把FreeAT当成执行m次的FGSM,最开始r=0,第一次更新的是x的梯度,之后开始迭代更新r,则根据x+r的梯度更新参数。但代码中有个问题是r只在最开始初始化,如果迭代到新的样本x2,也是根据上个样本的r进行更新的,这里我有些疑问,希望懂的大佬赐教下~

代码:https://github.com/mahyarnajibi/FreeAdversarialTraining/blob/d70774030871fa3207e09ce8528c1b84cd690603/main_free.py#L160

YOPO (You Only Propagate Once): NIPS2019

代码:https://github.com/a1600012888/YOPO-You-Only-Propagate-Once

YOPO的目标也是提升PGD的效率,这篇文章需要的理论知识比较雄厚,这里只简要介绍一下。

感兴趣又啃不下来原论文的同学(比如我)可以参考[9],如有解读错误欢迎指出~

极大值原理PMP(Pontryagin's maximum principle)是optimizer的一种,它将神经网络看作动力学系统。这个方法的优点是在优化网络参数时,层之间是解藕的。通过这个思想,我们可以想到,既然扰动是加在embedding层的,为什么每次还要计算完整的前后向传播呢?

基于这个想法,作者想复用后几层的梯度,假设p为定值:

则对r的更新就可以变为

我们可以先写出YOPO的梯度下降版本:

对于每个样本x初始化r(1,0)对于j=1,2,...,m: 1.根据r(j,0),计算p 对于s=0,1,...,n-1: 2.计算r(j,s+1) 3.另r(j+1,0)=r(j,n)

作者又提出了PMP版本的YOPO,并证明SGD的YOPO是PMP版的一种特殊形式。这样每次迭代r就只用到embedding的梯度就可以了。

引用[9]:

虽然YOPO-m-n只完成了m次完整的正反向传播,但是却实现了m*n次梯度下降。而PGD-r算法完成r次完整的正反向传播却只能实现r次梯度下降。这样看来,YOPO-m-n算法的效率明显更高,而实验也表明,只要使得m*n略大于r,YOPO-m-n的效果就能够与PGD-r相媲美。

然而故事的反转来的太快,FreeLB指出YOPO使用的假设对于ReLU-based网络不成立:

Interestingly, the analysis backing the extra update steps assumes a twice continuously differentiable loss, which does not hold for ReLU-based neural networks they experimented with, and thus the reasons for the success of such an algorithm remains obscure.

别问了,问就是PMP,来跟我一起进入下一部份的学习。

FreeLB (Free Large-Batch): ICLR2020

FreeLB认为,FreeAT和YOPO对于获得最优r (inner max)的计算都存在问题,因此提出了一种类似PGD的方法。只不过PGD只使用了最后一步x+r输出的梯度,而FreeLB取了每次迭代r输出梯度的平均值,相当于把输入看作一个K倍大的虚拟batch,由[X+r1, X+r2, ..., X+rk]拼接而成。具体的公式为:

为了方便对比,再贴下论文中PGD的公式:

FreeLB和PGD主要有两点区别:

1.PGD是迭代K次r后取最后一次扰动的梯度更新参数,FreeLB是取K次迭代中的平均梯度

2.PGD的扰动范围都在epsilon内,因为伪代码第3步将梯度归0了,每次投影都会回到以第1步x为圆心,半径是epsilon的圆内,而FreeLB每次的x都会迭代,所以r的范围更加灵活,更可能接近局部最优:

FreeLB的伪代码为:

对于每个x: 1.通过均匀分布初始化r,梯度g为0 对于每步t=1...K: 2.根据x+r计算前后向,累计梯度g 3.更新r 4.根据g/K更新梯度

论文中还指出了很重要的一点,就是对抗训练和dropout不能同时使用,加上dropout相当于改变了网络结构,会影响r的计算。如果要用的话需要在K步中都使用同一个mask。

SMART (SMoothness-inducing Adversarial Regularization)

SMART论文中提出了两个方法:

1.对抗正则 SMoothness-inducing Adversarial Regularization,提升模型鲁棒性

2.优化算法 Bregman proximal point optimization,避免灾难性遗忘

本文只介绍其中的对抗正则方法。

SMART提出了两种对抗正则损失,加到损失函数中:

第一种参考了半监督对抗训练,对抗的目标是最大化扰动前后的输出,在分类任务时loss采用对称的KL散度,回归任务时使用平方损失损失:

第二种方法来自DeepMind的NIPS2019[8],核心思想是让模型学习到的流行更光滑,即让loss在训练数据呈线性变化,增强对扰动的抵抗能力。作者认为,如果loss流行足够平滑,那l(x+r)可以用一阶泰勒展开进行近似,因此用来对抗的扰动需要最大化l(x+r)和一阶泰勒展开的距离:

SMART的算法和PGD相似,也是迭代K步找到最优r,然后更新梯度。

总结

把最近的一些对抗训练方法总结出来,可以看到趋势从“优化PGD的速度”又回到了“找寻最优扰动”,个人也比较认同,训练速度慢一些对于普通模型还是可以接受的,主要还是看最终的效果有没有提升。之前自己试过FGM和PGD,FGM有轻微提升,但PGD没有,应该需要在超参数上进行调整。FreeLB和SMART在GLUE榜单上都有出现过,相信之后对抗训练也是标配了,坐等微软放出源码。

参考文献:

[1]. 知乎:【炼丹技巧】功守道:NLP中的对抗训练 + PyTorch实现

[2]. FGSM: Explaining and Harnessing Adversarial Examples

[3]. FGM: Adversarial Training Methods for Semi-Supervised Text Classification

[4]. FreeAT: Adversarial Training for Free!

[5]. YOPO: You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle

[6]. FreeLB: Enhanced Adversarial Training for Language Understanding

[7]. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural

[8]. Adversarial Robustness through Local Linearization

[9]. 知乎:加速对抗训练——YOPO算法浅析

责任编辑:xj

原文标题:一文搞懂NLP中的对抗训练

文章出处:【微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 自然语言处理

    关注

    1

    文章

    509

    浏览量

    13104
  • nlp
    nlp
    +关注

    关注

    1

    文章

    464

    浏览量

    21829

原文标题:一文搞懂NLP中的对抗训练

文章出处:【微信号:zenRRan,微信公众号:深度学习自然语言处理】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    共享单车到底是什么通信原理

    我们经常骑的共享单车到底是什么通信原理,有人了解过吗? 一、智能车锁 共享单车最核心的硬件是智能车锁,主要用于实现控制和定位功能。
    发表于 04-09 10:33 209次阅读
    共享单车<b class='flag-5'>到底是</b>什么通信原理

    共享单车到底是什么通信原理?

    我们经常骑的共享单车到底是什么通信原理,有人了解过吗?下面宝蓝小编就带大家了解下。
    的头像 发表于 02-25 10:32 552次阅读
    共享单车<b class='flag-5'>到底是</b>什么通信原理?

    去耦滤波电容怎么布局摆放,到底是先大后小还是先小后大?

    去耦滤波电容怎么布局摆放,到底是先大后小还是先小后大?
    的头像 发表于 12-04 15:43 1399次阅读
    去耦滤波电容怎么布局摆放,<b class='flag-5'>到底是</b>先大后小还是先小后大?

    请问AD9684最低采样率到底是多少?

    关于AD9684最低采样率,数据手册有两处描述,但是不一致。请问AD9684最低采样率到底是多少?
    发表于 12-04 06:34

    请问AD8603的电源供电范围到底是多少呢?

    ADI官网上的数据手册给出的电源电压为1.8V-5V 但在ADI参考电路合集1的AD8603采用15V电源供电 请问AD8603的电源供电范围到底是多少呢?
    发表于 11-15 08:15

    呼吸灯到底是如何影响人的视觉的?

    呼吸灯到底是通过使灯快速亮灭还是改变平均电压来影响人的视觉的
    发表于 11-08 06:04

    请问单片机的中断系统到底是什么?

    中断系统到底是什么?还搞不定
    发表于 11-07 07:40

    上拉电阻到底是咋完成上拉的啊?

    上拉电阻到底是咋完成上拉的啊
    发表于 10-31 06:52

    什么是虚拟线程?虚拟线程到底是做什么用的呢?

    虚拟线程是在Java并发领域添加的一个新概念,那么虚拟线程到底是做什么用的呢?
    的头像 发表于 10-29 10:23 1131次阅读
    什么是虚拟线程?虚拟线程<b class='flag-5'>到底是</b>做什么用的呢?

    单片机的“性能”到底是什么?

    单片机的“性能”到底是什么?
    的头像 发表于 10-24 16:58 287次阅读
    单片机的“性能”<b class='flag-5'>到底是</b>什么?

    AT指令,AT固件,这个AT到底是什么意思?

    我们常说AT指令,AT固件,这个AT到底是什么意思?
    发表于 09-26 07:25

    物联网卡的流量到底是什么?超全详解!

    物联网卡的流量到底是什么?超全详解!
    的头像 发表于 08-31 09:13 962次阅读
    物联网卡的流量<b class='flag-5'>到底是</b>什么?超全详解!

    射频设计中的互调失真到底是如何发生的呢?如何预防?

    互调是射频设计避免对的一个问题,到底是如何发生的呢?我们一起来学习下。
    发表于 08-12 11:30 823次阅读
    射频设计中的互调失真<b class='flag-5'>到底是</b>如何发生的呢?如何预防?

    续流二极管到底是什么?

    续流二极管到底是什么
    发表于 06-26 07:55

    滤波器到底是什么呢?滤波有什么用呢?

    在关于雷达原理的说明中,经常见到各种滤波器的描述,那滤波器到底是什么呢?
    的头像 发表于 05-24 11:12 2951次阅读