0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多光子显微镜成像技术:大视场多区域脑成像技术

电子设计 来源:电子设计 作者:电子设计 2020-12-26 03:17 次阅读

为了了解神经回路的功能以及神经元之间的相互作用,需要对不同区域的大量神经元进行活体成像,我们这里介绍两种显微镜技术,分别针对大视场多区域成像和自由活动小鼠的活体成像。

从图1可以看出用于视觉处理的神经元分布在直径约3毫米的区域——小鼠初级视觉皮层和多个较高级的视觉区域。当前的商用双光子显微镜系统通常提供约0.5mm的视场(FOV),仅能对一小部分区域的神经活动进行成像(图1A), 而且它们仅能使用单束激光对单个区域进行成像。所以想要详细了解小鼠视觉皮层区域神经元的活动,需要开发视场大于3mm(图1B),并且能够同时进行多区域成像的双光子显微镜(图1C)。

图1 小鼠大脑的视觉区域[1]

文献[1]开发了大视场、双路径扫描的双光子显微镜系统(DIESEL2p),FOV大于5mm,两束独立的激光同时在两个不同的区域采集图像。图2是DIESEL2p装置图,光源是钛宝石激光器(80MHz、910nm),激光首先通过单棱镜进行预啁啾,在分开两条路径之前,经过一个自适应光学模块,包括两个变形镜,用来动态校正一些残留的光学像差。

接着激光被偏振分束器分向两条路径;在路径2中,通过延时光路将路径2的激光束相较路径1延迟6.25纳秒,来建立时分复用;两条光路都包括一个x共振型振镜,一个x检流计振镜,一个y检流计振镜和光继电器,每条扫描光路都可以独立于另一条扫描光路进行任意可变的光栅扫描。在两条扫描光路之后,两个分离的光束再通过偏振分束器合并。

图2 DIESEL2p装置[1]

该课题组展示了DIESEL2p系统的两个主要的功能:大视场成像和多区域成像。图3为DIESEL2p系统对小鼠的大脑组织在5毫米乘5毫米视场下进行成像,视场达到5毫米乘5毫米,同时保持神经元尺度的分辨率。

图3 小鼠大脑组织的大视场成像[1]

图4为利用DIESEL2p进行同步双区域成像的结果。两条光路同时进入皮肤不同区域,均覆盖1.5毫米乘5毫米的视场,且均设置每秒3.85帧的成像速率。图中可以清晰分辨每个神经元通过的两种路径以及神经元的活动。

图4 小鼠大脑组织的同步多区域成像[1]

DIESEL2p不仅可以独立地进行双路径成像,而且可以以不同的方式完成它们,比如路径1进行大面积、低速率成像,而路径2进行小面积、高速率的成像。系统中的两条路径也可以重叠,路径1的扫描面积较大,而路径2的仅对路径1的子区域进行成像。

该系统还可以通过重新定位两个或多个子区域之间的路径增加成像的区域,例如,路径1可以在两个单独的区域之间交替,而路径2可以在另外两个单独的区域之间交替,因此可以对四个分开的区域进行成像。最后,该系统不仅可以对路径进行光栅扫描,还可以进行随机访问成像。如图5,路径1进行标准光栅扫描,路径2可以在感兴趣的区域进行随机访问成像。

图5 小鼠大脑组织的同步多区域成像[1]

文献[2]提出了一种宽场结构照明显微镜,它通过一个光纤耦合的显微镜头对自由活动的小鼠的脑组织神经元进行成像。为了了解大量神经元的活动,在对小鼠进行活体成像时,当前的荧光显微镜技术对小鼠头部进行固定会阻止小鼠的部分自然行为,而在成像过程中,使清醒的小鼠减少限制自由活动,对理解其行为至关重要。所以需要制造紧凑的小型成像系统,小鼠头部配有微型显微镜,可进行实时成像,通过减轻小鼠头部固定的负担,它承受的压力较小,就可以自由活动。该工作提出了一种宽场结构照明显微镜,通过一个微型、小质量的光纤耦合的显微镜头进行成像。

根据阿贝成像原理,许多光学成像系统是一个低通滤波器,物平面包含从低频到高频的信息,透镜口径会限制高频信息通过,只允许一定的低频通过,因此丢失了高频信息会使成像所得图像的细节变模糊,降低分辨率。对于三维成像来说,宽场照明时得到的信息不仅包含物镜焦平面上样品的部分信息,同时还包含焦平面外的样品信息。由于受到焦平面外的信息干扰,常规荧光显微镜无法获得层析图像。

三维结构光照明显微镜能够提高分辨率、获得层析图像,是因为利用特定结构的照明光能引入样品的高频信息,当结构光的空间频率足够高时,只有靠近焦面的部分才能被结构光调制,超出这一区域,逐渐转变为均匀照明,也就是只有焦面附近的有限区域具有相对完整的频谱信息,离焦后,高频信息迅速衰减,所以使用高频结构光照明可以区分焦面和离焦区域来获得层析图像。然后再通过轴向扫描可以获取样品不同深度的焦面图像,重建样品的三维结构。

实验装置如图6所示,非相干LED光源波长为470 nm,数字微镜器件(DMD)生成结构照明条纹,控制相干光纤束(CFB)入射面的照明空间模式。然后,空间图案通过光纤束再通过光纤耦合显微镜(FCM)聚焦到样本上,左下图即是穿过光纤束的结构照明条纹图案示例。样品发出的荧光通过CFB收集,经过二向色镜和滤波片最终成像到CMOS相机上。

图6 实验装置[2]

微型光纤耦合显微镜(FCM)的具体结构如图7。FCM中集成了一个微型电润湿可调透镜,用于深度扫描,通过施加特定的电压,电湿润透镜内部两种液体之间的相互作用会改变激发的焦点。并且由于电润湿透镜内部两种液体的密度相似,不会受到运动和振动的影响,因此非常适合用于清醒的动物。FCM在组织中的视场为215微米,轴向总扫描范围为250微米。

图7 光纤耦合显微镜(FCM)[2]

为了验证该成像系统的功能,该课题组对小鼠的固定脑切片进行了深度成像(图8),使用FCM分别获得了宽场和结构照明下海马神经元的图像,样品处的照明图案的空间频率为65.1 mm-1。与宽场相比,重建的SIM图像有相同或更好的信噪比。通过调节施加到电润湿透镜上的电压在厚组织中进行了深度扫描成像,在不同轴向焦平面上的图像重建,可以产生4.9 ?m的光学切片。总的来说,该课题组发展了一种宽场结构照明显微镜它通过一个微型、小质量的光纤耦合显微镜头对自由移动的小鼠进行深脑体积成像,并且光纤耦合显微镜内部装有电润湿可调透镜,可以实现无机械轴向扫描。

审核编辑:符乾江


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    264

    浏览量

    31288
  • 显微镜
    +关注

    关注

    0

    文章

    459

    浏览量

    22590
收藏 人收藏

    评论

    相关推荐

    简仪科技紫外光子成像技术应用

    在面对紫外光子成像技术时,面临着诸多挑战。光子密度大、需要高频触发采集,以及实时计算光子位置进行谱图绘制,这些都对采集设备的性能提出了极高的
    的头像 发表于 03-20 09:56 165次阅读
    简仪科技紫外<b class='flag-5'>光子</b><b class='flag-5'>成像</b><b class='flag-5'>技术</b>应用

    浅谈超分辨光学成像

    分辨光学定义及应用 分辨光学成像特指分辨率打破了光学显微镜分辨率极限(200nm)的显微镜技术原理主要有受激发射损耗显微镜
    的头像 发表于 03-15 06:35 138次阅读
    浅谈超分辨光学<b class='flag-5'>成像</b>

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    用于材料科学领域的共聚焦显微镜,基于光学共轭共焦原理,其超高的空间分辨率和三维成像能力,提供了全新的视角和解决方案。工作原理共聚焦显微镜通过在样品的焦点处聚焦激光束,在样品表面进行快速点扫描
    发表于 02-20 09:07 0次下载

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    共聚焦显微镜在材料学领域应用广泛,通过超高分辨率的三维显微成像测量,可清晰观察材料的表面形貌、表层结构和纳米尺度的缺陷,有助于理解材料的微观特性和材料工程设计。
    的头像 发表于 02-18 10:53 258次阅读
    <b class='flag-5'>显微</b>测量|共聚焦<b class='flag-5'>显微镜</b>大倾角超清纳米三维<b class='flag-5'>显微</b><b class='flag-5'>成像</b>

    一种大视场结构照明显微镜设计

    结构照明显微镜(SIM)具有成像速度快、侵入性小、分辨率超高、具有光学切片成像能力等优点,在生物学研究中得到了广泛的应用。然而,使用空间光调制器(SLM)进行条纹投影的传统SIM通常具有有限的
    的头像 发表于 01-07 14:14 279次阅读
    一种大<b class='flag-5'>视场</b>结构照明<b class='flag-5'>显微镜</b>设计

    红外成像技术及应用

    62页PPT详细介绍红外成像技术及应用
    发表于 09-27 07:38

    红外被动近场显微镜的实验原理及其应用

    本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实现纳米级红外温度
    发表于 09-22 10:16 346次阅读
    红外被动近场<b class='flag-5'>显微镜</b>的实验原理及其应用

    STEM的成像原理 STEM的图像衬度来源

    扫描透射电子显微镜(Scanning Transmission Electron Microscope,简称STEM),是在TEM成像技术上发展起来的一种电子显微
    的头像 发表于 09-19 11:24 3127次阅读
    STEM的<b class='flag-5'>成像</b>原理 STEM的图像衬度来源

    为什么激光共聚焦显微镜成像质量更好?

    相机上成像。 为什么激光共聚焦显微镜成像质量更好? **1、激光共聚焦显微镜采用了激光扫描技术。**与传统
    发表于 08-22 15:19

    为什么激光共聚焦显微镜成像质量更好?

    VT6000激光共聚焦显微镜采用了激光扫描技术,具有的大光学孔径(显微镜接收到样品发出的光的能力)和高数值孔径物镜(镜头的放大倍数),使成像更清晰细致。
    的头像 发表于 08-22 09:09 584次阅读
    为什么激光共聚焦<b class='flag-5'>显微镜</b><b class='flag-5'>成像</b>质量更好?

    共聚焦显微镜如何三维成像

    共聚焦显微镜是一种重要的显微镜技术,它可以提供高分辨率和三维成像能力,对材料科学等领域具有重要意义。三维成像原理由LED光源发出的光束经过一
    的头像 发表于 08-15 10:52 646次阅读
    共聚焦<b class='flag-5'>显微镜</b>如何三维<b class='flag-5'>成像</b>

    结构深、角度大、反射差?用共聚焦显微镜就对啦!

    和共聚焦3D显微形貌检测技术,广泛应用于涉足超精密加工领域的三维形貌检测与表面质量检测方案。其中,VT6000系列共聚焦显微镜,在结构复杂且反射率低的表面3D微观形貌重构与检测方面具有不俗的表现。 一
    发表于 08-04 16:12

    华东师大实现超灵敏、高分辨、大视场的中红外单光子三维成像

    华东师大精密光谱科学与技术国家重点实验室曾和平教授与黄坤研究员团队在中红外三维成像领域取得进展,发展了宽视场、超灵敏、高分辨的中红外上转换三维成像
    的头像 发表于 07-26 09:18 1129次阅读
    华东师大实现超灵敏、高分辨、大<b class='flag-5'>视场</b>的中红外单<b class='flag-5'>光子</b>三维<b class='flag-5'>成像</b>

    相机靶面大小和显微镜FN的匹配关系

      相机的作用说白了就是将显微镜光路所放大的像显示出来。在显微镜领域有一个专业术语叫做Field Number(以下简称FN),用来表征显微镜成像平面(是一个圆形
    的头像 发表于 06-09 06:50 347次阅读
    相机靶面大小和<b class='flag-5'>显微镜</b>FN的匹配关系

    衍射编码双光子合成孔径显微术,实现深层活体组织时空跨尺度观测

    传统双光子显微镜使用“点扫描”的方案对三维样本进行扫描,类似于共聚焦荧光显微镜,由于双光子成像的非线性效应使其能够获得数倍于单
    的头像 发表于 05-15 15:28 593次阅读
    衍射编码双<b class='flag-5'>光子</b>合成孔径<b class='flag-5'>显微</b>术,实现深层活体组织时空跨尺度观测