0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多光子显微镜成像技术:大视场多区域脑成像技术

电子设计 来源:电子设计 作者:电子设计 2020-12-26 03:17 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

为了了解神经回路的功能以及神经元之间的相互作用,需要对不同区域的大量神经元进行活体成像,我们这里介绍两种显微镜技术,分别针对大视场多区域成像和自由活动小鼠的活体成像。

从图1可以看出用于视觉处理的神经元分布在直径约3毫米的区域——小鼠初级视觉皮层和多个较高级的视觉区域。当前的商用双光子显微镜系统通常提供约0.5mm的视场(FOV),仅能对一小部分区域的神经活动进行成像(图1A), 而且它们仅能使用单束激光对单个区域进行成像。所以想要详细了解小鼠视觉皮层区域神经元的活动,需要开发视场大于3mm(图1B),并且能够同时进行多区域成像的双光子显微镜(图1C)。

图1 小鼠大脑的视觉区域[1]

文献[1]开发了大视场、双路径扫描的双光子显微镜系统(DIESEL2p),FOV大于5mm,两束独立的激光同时在两个不同的区域采集图像。图2是DIESEL2p装置图,光源是钛宝石激光器(80MHz、910nm),激光首先通过单棱镜进行预啁啾,在分开两条路径之前,经过一个自适应光学模块,包括两个变形镜,用来动态校正一些残留的光学像差。

接着激光被偏振分束器分向两条路径;在路径2中,通过延时光路将路径2的激光束相较路径1延迟6.25纳秒,来建立时分复用;两条光路都包括一个x共振型振镜,一个x检流计振镜,一个y检流计振镜和光继电器,每条扫描光路都可以独立于另一条扫描光路进行任意可变的光栅扫描。在两条扫描光路之后,两个分离的光束再通过偏振分束器合并。

图2 DIESEL2p装置[1]

该课题组展示了DIESEL2p系统的两个主要的功能:大视场成像和多区域成像。图3为DIESEL2p系统对小鼠的大脑组织在5毫米乘5毫米视场下进行成像,视场达到5毫米乘5毫米,同时保持神经元尺度的分辨率。

图3 小鼠大脑组织的大视场成像[1]

图4为利用DIESEL2p进行同步双区域成像的结果。两条光路同时进入皮肤不同区域,均覆盖1.5毫米乘5毫米的视场,且均设置每秒3.85帧的成像速率。图中可以清晰分辨每个神经元通过的两种路径以及神经元的活动。

图4 小鼠大脑组织的同步多区域成像[1]

DIESEL2p不仅可以独立地进行双路径成像,而且可以以不同的方式完成它们,比如路径1进行大面积、低速率成像,而路径2进行小面积、高速率的成像。系统中的两条路径也可以重叠,路径1的扫描面积较大,而路径2的仅对路径1的子区域进行成像。

该系统还可以通过重新定位两个或多个子区域之间的路径增加成像的区域,例如,路径1可以在两个单独的区域之间交替,而路径2可以在另外两个单独的区域之间交替,因此可以对四个分开的区域进行成像。最后,该系统不仅可以对路径进行光栅扫描,还可以进行随机访问成像。如图5,路径1进行标准光栅扫描,路径2可以在感兴趣的区域进行随机访问成像。

图5 小鼠大脑组织的同步多区域成像[1]

文献[2]提出了一种宽场结构照明显微镜,它通过一个光纤耦合的显微镜头对自由活动的小鼠的脑组织神经元进行成像。为了了解大量神经元的活动,在对小鼠进行活体成像时,当前的荧光显微镜技术对小鼠头部进行固定会阻止小鼠的部分自然行为,而在成像过程中,使清醒的小鼠减少限制自由活动,对理解其行为至关重要。所以需要制造紧凑的小型成像系统,小鼠头部配有微型显微镜,可进行实时成像,通过减轻小鼠头部固定的负担,它承受的压力较小,就可以自由活动。该工作提出了一种宽场结构照明显微镜,通过一个微型、小质量的光纤耦合的显微镜头进行成像。

根据阿贝成像原理,许多光学成像系统是一个低通滤波器,物平面包含从低频到高频的信息,透镜口径会限制高频信息通过,只允许一定的低频通过,因此丢失了高频信息会使成像所得图像的细节变模糊,降低分辨率。对于三维成像来说,宽场照明时得到的信息不仅包含物镜焦平面上样品的部分信息,同时还包含焦平面外的样品信息。由于受到焦平面外的信息干扰,常规荧光显微镜无法获得层析图像。

三维结构光照明显微镜能够提高分辨率、获得层析图像,是因为利用特定结构的照明光能引入样品的高频信息,当结构光的空间频率足够高时,只有靠近焦面的部分才能被结构光调制,超出这一区域,逐渐转变为均匀照明,也就是只有焦面附近的有限区域具有相对完整的频谱信息,离焦后,高频信息迅速衰减,所以使用高频结构光照明可以区分焦面和离焦区域来获得层析图像。然后再通过轴向扫描可以获取样品不同深度的焦面图像,重建样品的三维结构。

实验装置如图6所示,非相干LED光源波长为470 nm,数字微镜器件(DMD)生成结构照明条纹,控制相干光纤束(CFB)入射面的照明空间模式。然后,空间图案通过光纤束再通过光纤耦合显微镜(FCM)聚焦到样本上,左下图即是穿过光纤束的结构照明条纹图案示例。样品发出的荧光通过CFB收集,经过二向色镜和滤波片最终成像到CMOS相机上。

图6 实验装置[2]

微型光纤耦合显微镜(FCM)的具体结构如图7。FCM中集成了一个微型电润湿可调透镜,用于深度扫描,通过施加特定的电压,电湿润透镜内部两种液体之间的相互作用会改变激发的焦点。并且由于电润湿透镜内部两种液体的密度相似,不会受到运动和振动的影响,因此非常适合用于清醒的动物。FCM在组织中的视场为215微米,轴向总扫描范围为250微米。

图7 光纤耦合显微镜(FCM)[2]

为了验证该成像系统的功能,该课题组对小鼠的固定脑切片进行了深度成像(图8),使用FCM分别获得了宽场和结构照明下海马神经元的图像,样品处的照明图案的空间频率为65.1 mm-1。与宽场相比,重建的SIM图像有相同或更好的信噪比。通过调节施加到电润湿透镜上的电压在厚组织中进行了深度扫描成像,在不同轴向焦平面上的图像重建,可以产生4.9 ?m的光学切片。总的来说,该课题组发展了一种宽场结构照明显微镜它通过一个微型、小质量的光纤耦合显微镜头对自由移动的小鼠进行深脑体积成像,并且光纤耦合显微镜内部装有电润湿可调透镜,可以实现无机械轴向扫描。

审核编辑:符乾江


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    306

    浏览量

    32151
  • 显微镜
    +关注

    关注

    0

    文章

    715

    浏览量

    25138
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    超景深显微镜在材料学中的应用

    超景深显微镜显微成像领域的关键技术突破,通过特殊光学设计与先进图像处理算法,实现大景深成像,单一视场
    的头像 发表于 11-11 18:03 1106次阅读
    超景深<b class='flag-5'>显微镜</b>在材料学中的应用

    共聚焦显微镜(LSCM)的关键参数解析

    共聚焦显微镜作为一种高分辨率三维成像工具,已在半导体、材料科学等领域广泛应用。凭借其精准的光学切片与三维重建功能,研究人员能够获取纳米尺度结构的高清图像。下文,光子湾科技将系统解析共聚焦显微镜
    的头像 发表于 11-04 18:05 310次阅读
    共聚焦<b class='flag-5'>显微镜</b>(LSCM)的关键参数解析

    三维成像技术:共聚焦成像vs光片成像的光学切片

    存在显著差异。下文,光子湾科技将深入对比这两种成像技术的核心特点,为科研人员根据研究目标选择适配工具提供参考。#Photonixbay.光学切片的作用普通光学显微镜
    的头像 发表于 10-28 18:04 518次阅读
    三维<b class='flag-5'>成像</b><b class='flag-5'>技术</b>:共聚焦<b class='flag-5'>成像</b>vs光片<b class='flag-5'>成像</b>的光学切片

    共聚焦显微镜精准成像的使用技巧

    共聚焦显微镜的核心使用技巧围绕“如何优化成像质量”展开,涵盖四大关键内容:一是成像参数的动态调控,需在亮度、分辨率与成像速度间找到适配平衡;二是针对弱荧光、易淬灭等不同特性的样品,提供
    的头像 发表于 09-25 18:03 624次阅读
    共聚焦<b class='flag-5'>显微镜</b>精准<b class='flag-5'>成像</b>的使用技巧

    共聚焦显微镜和电子显微镜有什么区别?

    在现代科研与高端制作领域,微观探索依赖高分辨率成像技术,共聚焦显微镜与电子显微镜是其中的核心代表。在微观检测中,二者均突破传统光学显微镜局限
    的头像 发表于 09-18 18:07 601次阅读
    共聚焦<b class='flag-5'>显微镜</b>和电子<b class='flag-5'>显微镜</b>有什么区别?

    共聚焦显微镜原理:纳米级成像技术的关键

    在微观世界中,细节决定成败。共聚焦显微镜技术,作为一项突破性的成像技术,正引领着纳米级成像的新纪元。它不仅提供了前所未有的高分辨率和对比度,
    的头像 发表于 08-05 17:55 1234次阅读
    共聚焦<b class='flag-5'>显微镜</b>原理:纳米级<b class='flag-5'>成像</b><b class='flag-5'>技术</b>的关键

    共聚焦显微镜增强显微成像,用于纳米技术的精确分析

    共聚焦显微技术,作为光学显微镜领域的一项里程碑式创新,为科学家们提供了一种全新的视角,以前所未有的清晰度观察微观世界。美能光子湾3D共聚焦显微镜
    的头像 发表于 08-05 17:54 939次阅读
    共聚焦<b class='flag-5'>显微镜</b>增强<b class='flag-5'>显微</b><b class='flag-5'>成像</b>,用于纳米<b class='flag-5'>技术</b>的精确分析

    超景深显微镜技术:拓展微观形貌表征分析新维度

    微观结构的精确测量是实现材料性能优化和器件功能提升的核心,超景深显微镜技术以其在测量中的高精度和高景深特性,为材料科学界提供了一种新的分析工具,用以精确解析微观世界的复杂结构。美能光子湾将带您了解超
    的头像 发表于 08-05 17:54 1162次阅读
    超景深<b class='flag-5'>显微镜</b><b class='flag-5'>技术</b>:拓展微观形貌表征分析新维度

    超景深显微镜的基本原理

    在科技飞速发展的今天,光学技术作为现代科学研究与工业生产的关键支撑。超景深显微镜,作为光学精密测量领域的核心技术装备,凭借其卓越的三维成像能力,正成为众多科研与工业领域不可或缺的重要工
    的头像 发表于 08-05 17:47 1464次阅读
    超景深<b class='flag-5'>显微镜</b>的基本原理

    为什么说高光谱成像是“超级显微镜”?背后的原理竟如此神奇

    为什么说高光谱成像是“超级显微镜
    的头像 发表于 07-22 13:31 846次阅读

    VirtualLab Fusion应用:用于高NA显微镜成像的工程化PSF

    Exp. 2012]。通过这种工程化的PSF,甚至可以观察到物体的微小散焦,即与传统的成像方法相比,可以大大提高轴向分辨率。 我们通过在VirtualLab Fusion中应用商业显微镜镜头
    发表于 03-26 08:47

    超景深3D检测显微镜技术解析

    显微镜在观察高纵深样本时,往往难以同时保持所有层面的清晰度,而上海桐尔的技术通过精密的光学系统设计和焦点成像技术,能够在不同深度上捕捉到高
    发表于 02-25 10:51

    VirtualLab Fusion案例:单分子显微镜高NA成像系统的建模

    数值孔径的反射显微镜系统 这个用例演示了如何使用VirtualLab Fusion的快速物理光学技术建模NA=0.99的高数值孔径紧凑型反射显微镜系统。 高NA傅里叶显微镜的单分子
    发表于 01-16 09:52

    VirtualLab Fusion案例:高NA反射显微镜系统

    摘要 在单分子显微镜成像应用中,定位精度是一个关键问题。由于在某一方向上的定位精度与图像在同一方向上的点扩散函数(point spread function, PSF)的宽度成正比,因此具有较高
    发表于 01-16 09:50

    VirtualLab Fusion案例:高NA傅里叶单分子成像显微镜

    1.摘要 傅里叶显微术广泛应用于单分子成像、表面等离子体观测、光子晶体成像等领域。它使直接观察空间频率分布成为可能。在高NA傅里叶显微镜中,
    发表于 01-15 09:39