0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

多光子显微镜成像技术:偏振分辨倍频显微镜及其图像处理

电子设计 来源:电子设计 作者:电子设计 2020-12-26 03:09 次阅读

在非线性光学显微镜中,二倍频(SHG)成像通常用于观测内源性纤维状结构,且SHG的强度很大程度上取决于入射光束的偏振方向与目标分子取向轴之间的相对角度。因此,基于偏振的SHG成像(P-SHG),可通过分析SHG信号强度与入射光束的偏振态之间的函数关系,来获得目标分子的结构信息。其现在已用作医学和生物学分析的重要工具。

简单的SHG图像可以通过传统的双光子激发荧光显微镜(TPM)获得。大多数TPM系统仍采用基于运动镜面的单束扫描方法,其时间分辨率取决于镜面的物理移动速度。为了实现更高速的成像,TPM系统还可以采用多束扫描的方法(图1A),其中之一便是利用转盘扫描单元。该单元由共轴的微透镜转盘和针孔转盘构成,两个转盘上的微透镜和针孔一一对应。

激光在通过微透镜转盘时,波前会覆盖多个微透镜,不同微透镜将波前各部分聚焦到不同的位置,并穿过对应的针孔,形成多个微光束。这些微光束打到样品上,可同时激发多个信号。这些信号沿显微镜系统返回并再次穿过针孔,最后被两个转盘之间的二向色镜反射到检测装置中。然而,常规使用的锁模钛宝石激光器作为光源能量不足,限制了激发光束的数量,导致使用转盘扫描单元的TPM (TPM-SD) 的有效视场 (FOV) 很小。

Ai Goto等人想通过TPM-SD系统实现高速的P-SHG成像,并保证大的FOV,故在TPM-SD系统中引入了峰值功率更高的基于Yb的激光光源。

图1是他们开发的TPM-SD系统示意图。该系统光源为基于Yb的激光器,产生的飞秒脉冲中心波长为1042 nm、平均功率4 W、脉宽300 fs,重复频率10 MHz。系统首先通过半波片和格兰激光偏振器来调节激光功率,接着通过扩束器进行扩束,扩束后的光束被引入到转盘扫描单元中,接着从扫描单元出来的多个微光束通过水浸物镜被聚焦在样品的多个点上。为了调整光束在物镜处的偏振态,激发光束的光路上放置了一个半波片和一个四分之一波片。

为了测量样品上入射光束的偏振态,在物镜后端放置了一个线性偏振膜。在这项研究中,他们使用了圆偏振光(图1B;椭圆度0.95)和4种线偏振光束(图1C-F;椭圆度0.2-0.3)。以FOV的水平轴为基准,将横向偏振角设置为0、45、90和135°。物镜收集到的荧光或SHG光通过针孔转盘,被二向色镜反射至偏振分束器。偏振分束器将信号分离为一对偏振分辨信号,它们被放大倍数为×1.2的中继透镜分别聚焦在电子倍增CCD相机的不同方形检测区域上,从而同时获取一对矩形图像。轴向扫描是通过压电驱动器实现的。

总之,该组通过TPM-SD系统,开发了一种高速的偏振分辨成像方法。他们使用该系统对固定的小鼠皮肤样品和骨骼肌样品(离体)以及活体小鼠的骨骼肌进行了成像,证明了该系统能以56 Hz的时间分辨率对体内组织成像,获取胶原纤维的结构信息。

图1 (A) TPM-SD系统;(B–F) 通过调整HWP和QWP的位置,改变入射光脉冲在样品上的偏振态。[1]

非线性成像技术的优化,除了基于图像获取模式的优化,还可以从先进的图像处理算法入手。发展图像的实时分析工具,以帮助病理学家快速表征组织特性,实现自动化的病症诊断,具有极大的推动医学发展的潜力。目前,用于自动提取疾病特征的用户独立算法引起了越来越多的关注。2019年,Riccardo Scodellaro等人开发了一种针对P-SHG的图像处理方法——μMAPPS(Microscopic Multiparametric Analysis by Phasor projection of Polarization-dependent SHG signal)。其原理是对每个像素的随入射光偏振态变化的SHG信号()进行二维相量分析,从中分析出各像素对应胶原蛋白纤维的平均取向角 (θF)和极化率各向异性参数(γ,极化率张量χ(2)的非对角线和对角线元素的比),并依此获得组织细胞外基质(ECM)中胶原蛋白的微结构信息。

该组的最终目标为无人员操作,全自动化,基于μMAPPS算法的病理学诊断:通过区分不同组织中不同的胶原蛋白结构,来区分正常组织和癌变组织。具体方法为,先通过μMAPPS重构每个像素的和信息,接着,将整个图像划分为包含大量感兴趣区域(ROI)的网格,对每个ROI的所有像素应用聚类算法,将和类似的像素归为一类(簇),至此,每个ROI的像素都被分为了数十个簇,然后,基于不同ROI中不同的分簇,定义一组参数 (p参数:簇数(NC),簇元素比(CER,每个簇与最大像素数量的簇,所含像素数量之比),和熵(S)), 以量化各ROI中胶原蛋白结构的无序性。

最后,以所有ROI参数的平均值为基准,将各ROI区分为正常组织或癌变组织,并对应投影回原图像中。图2是基于熵值的肿瘤边缘分割结果。该组通过研究CT26(结肠癌)和4T1(乳腺癌)两种癌症模型,测试了该方法自动区分肿瘤和健康组织区域的准确率,并证明熵是在同一组织类型内,区分肿瘤与健康区域,判别肿瘤边缘的最佳参数。

图2 (A, B) 基于熵(S)的感兴趣区域(ROI)的分析结果。每个150×150 ?m2的ROI(A, B)都按照图例进行了颜色编码,以表示CT26的癌变区域(A)和4T1的癌变区域(B),及其中检索到的熵值。(C, D) 将ROI分析结果反投影到CT26 (C)和4T1 (D) 肿瘤模型的原图像平面,并分割出癌变部分的图像。红色虚线表示肿瘤和正常组织的边界。 [2]

参考文献

[1] 2019. Ai Goto?, Kohei Otomo? and Tomomi Nemoto. Real-Time Polarization-Resolved Imaging of Living Tissues Based on Two-Photon Excitation Spinning-Disk Confocal Microscopy

[2] 2019. Riccardo Scodellaro, Margaux Bouzin, Francesca Mingozzi, Laura D’Alfonso,Francesca Granucci, Maddalena Collini, Giuseppe Chirico? and Laura Sironi?. Whole-Section Tumor Micro-Architecture Analysis by a Two-Dimensional Phasor-Based Approach Applied to Polarization-Dependent Second Harmonic Imaging

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    267

    浏览量

    31304
  • 显微镜
    +关注

    关注

    0

    文章

    466

    浏览量

    22632
收藏 人收藏

    评论

    相关推荐

    共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜。在它用于精确测量样品的尺寸、形状、表面粗糙度或其他物理特性时,能够提供非常精确的三维形貌图像,这使得它成为测量样品表面特征的强大工
    发表于 05-14 10:43 0次下载

    显微成像与精密测量:共聚焦、光学显微镜与测量显微镜的区分

    共聚焦显微镜是一种光学显微镜,也可以被称为测量显微镜。能够进行二维和三维成像,是光学显微镜技术
    的头像 发表于 05-11 11:38 268次阅读
    <b class='flag-5'>显微</b><b class='flag-5'>成像</b>与精密测量:共聚焦、光学<b class='flag-5'>显微镜</b>与测量<b class='flag-5'>显微镜</b>的区分

    共聚焦显微镜和激光共聚焦显微镜的区别详解

    两者在细节和特性上存在差异。1、原理上的差别:共聚焦显微镜基于共焦原理的显微镜技术,是一种使用了透镜系统将样品的不同焦深处的光聚焦到同一焦点上。这种聚焦方式能够减少背景噪音,提高图像
    发表于 04-16 10:40 0次下载

    显微测量|共聚焦显微镜大倾角超清纳米三维显微成像

    用于材料科学领域的共聚焦显微镜,基于光学共轭共焦原理,其超高的空间分辨率和三维成像能力,提供了全新的视角和解决方案。工作原理共聚焦显微镜通过在样品的焦点处聚焦激光束,在样品表面进行快速
    发表于 02-20 09:07 0次下载

    【应用案例】扫描近场光学显微镜SNOM

    (或远场)光学显微镜理论分辨率的阿贝衍射极限,将光学分辨率提高了几十甚至上百倍。且纵向分辨率优于横向分辨率,能够得到清晰的三维
    的头像 发表于 01-09 14:19 330次阅读

    共聚焦显微镜应用特点

    共聚焦显微镜具有高分辨率和高灵敏度的特点,适用于多种不同样品的成像和分析,能够产生结果和图像清晰,易于分析。这些特性使共聚焦显微镜成为现代科
    发表于 11-21 09:21 0次下载

    一文了解电子显微镜和光学显微镜的差异

    如今,不仅有能放大几千倍的光学显微镜,也有能放大几十万倍的电子显微镜,让我们对生物体的生命活动规律有了更深入的了解。普通中学生物教学大纲中规定的实验绝大部分都是利用显微镜来完成的,因此显微镜
    的头像 发表于 11-07 15:23 928次阅读

    红外被动近场显微镜的实验原理及其应用

    本文将围绕扫描噪声显微镜(SNoiM)技术的实验原理及其应用,详细介绍如何通过自主研制的红外被动近场显微镜,突破红外热成像的衍射极限限制,实
    发表于 09-22 10:16 400次阅读
    红外被动近场<b class='flag-5'>显微镜</b>的实验原理<b class='flag-5'>及其</b>应用

    显微镜下锡膏回温时候的视频

    锡膏显微镜
    jf_17722107
    发布于 :2023年09月21日 13:49:39

    为什么激光共聚焦显微镜成像质量更好?

    相机上成像。 为什么激光共聚焦显微镜成像质量更好? **1、激光共聚焦显微镜采用了激光扫描技术。**与传统
    发表于 08-22 15:19

    共聚焦显微镜如何三维成像

    共聚焦显微镜是一种重要的显微镜技术,它可以提供高分辨率和三维成像能力,对材料科学等领域具有重要意义。三维
    的头像 发表于 08-15 10:52 672次阅读
    共聚焦<b class='flag-5'>显微镜</b>如何三维<b class='flag-5'>成像</b>

    结构深、角度大、反射差?用共聚焦显微镜就对啦!

    和共聚焦3D显微形貌检测技术,广泛应用于涉足超精密加工领域的三维形貌检测与表面质量检测方案。其中,VT6000系列共聚焦显微镜,在结构复杂且反射率低的表面3D微观形貌重构与检测方面具有不俗的表现。 一
    发表于 08-04 16:12

    #硬声创作季 显微镜下看看华为和苹果屏幕的区别

    显微镜
    jf_27932003
    发布于 :2023年07月22日 17:08:52

    相机靶面大小和显微镜FN的匹配关系

    和相机之间的中继镜筒后会直接投射在相机的芯片上从而成像。而常规的相机芯片都是矩形,这样在实际成像的时候让这两个形状匹配就会有两种方案: 方案一:获得最大的成像视野 这种方案为了得到显微镜
    的头像 发表于 06-09 06:50 391次阅读
    相机靶面大小和<b class='flag-5'>显微镜</b>FN的匹配关系