0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

BMS算法设计之电池SOH的介绍(上)

电子设计 来源:电子设计 作者:电子设计 2020-12-25 20:00 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

无论是读万卷书,还是行万里路,都源于点点滴滴的积累。祝愿大家五一劳动节快乐!

大家好,不知不觉,2020就过去大半了,真的是光阴似箭啊!本期跟大家聊一聊电池包的SOH,一起来学习交流吧!介绍

电池包的SOH定义为电池健康状态的定量指标,并根据电池的寿命终止来确定。但是,并不是所有的业界专家都接受电池的寿命终止这种单一的定义。因此,在业界也有不同的定义,比如:“日历寿命”——用月或者年来表示电池的寿命。所以,电池的终止寿命也被认为是基于时间周期。然而,我们也知道,电池的寿命也受不同的使用场景的影响。所以,另外一种电池寿命的定义也随即提出——“循环寿命”。在第二种定义中,电池包的寿命通过电池包充放电模式的使用表示。此时,电池包的寿命计算是基于充放电的循环数的。当负载条件一致并且可重复时,这种定义就可以拿来计算电池包SOH了。

电池健康状态-SOH

如前面所说,SOH的定义在业界是有异声的,也就是存在不同的定义方式。SOH指示的是剩余的电池寿命;然而,问题是并不是单一的关于电池终止寿命的定义被广泛接受。为了澄清这一点,业界的一些通用的表达解释如下:

日历寿命(Calendar Life)

在此种定义中,电池的寿命,和它的寿命终止,用一系列的月数或者年数来代表。我们同意,跟其他的设备一样,电池的使用寿命受到不同的使用场景的影响。当然电池的寿命也可能比日历预测的提前结束,因此,另外一种定义电池寿命的方式——循环寿命,被提了出来。

循环寿命(Cycling Life)

此种定义中,电池寿命计算取决于在给定条件下的电池可以维持的循环数。但是准确的周期在电动汽车中又很难计数,因为驱动条件是可变的,因此电池无法定期循环。另一方面,充放电速率也会明显影响到可用的循环数。此外,所有类似的电芯都不一定有相同的行为,不同电芯的可用循环数也不一样。

基于容量衰减的SOH定义(Capacity Fade)

关于电池循环计数的实际限制,已经有一些结论得出:我们需要一些其他的定量指标来反应电池的老化情况。例如:电池的容量衰减已经在许多的研究中用作反应电池老化的指标。锂离子电池的恶化也是始于电池生产制造之后由于电池内部的电化学反应的发生。这个过程会导致电池内部活性物质的恶化,并且因此,电池的内阻增加,这意味着电池内部更多的损耗和容量的衰减。对电池容量进行估算可以给我们传达一些有用的信息。这样我们可以通过对比电池的容量(Cbatt)和它的初始容量值(Cinit)来获取电池的当前的衰减程度。通常来说,我们认为当电池的终止寿命是当前容量达到容量初始值的80%的时候。SOH可以用如下的公式来表示:SOH = 1- (Cinit-Cbatt)/0.2Cinit, 0.8Cinit < Cbatt < Cinit这里,SOH可以在0—1之间变化,0意味着电池的寿命终止(Cbatt=80%Cinit)。公式分母中的系数0.2来自于Cinit-0.8Cinit=0.2Cinit。

基于功率衰减的SOH定义(Power Fade)

电池SOH的另一个定义是基于“功率衰减”而不是容量衰减。这里指的是老化的过程如何降低电池的功率。电池直接可以传送的功率取决于电池内部的电阻。几乎所有类型的电池的老化都会导致电池内阻的增加。因此,我们可以用此参数来表示电池的SOH。电池的内阻越高,其可用的功率就越小。原因是较高的内阻导致电池端子的电压降比较高。我们假设一个简单的电池模型,包含一个电阻(Ro)和一个电压源(Voc)串联,电池的终端电压(Vt)的计算如下:(内阻直接会影响到终端电压的回落(Ro*Io))Vt = Voc - Ro*Io

业界也有许多研究评估了电池老化对其内阻的影响。比如:当电池的欧姆内阻达到初始化内阻的两倍时,我们可以认为电池的EOL达到了。使用此种定义,电池SOH可以用下面的算式计算:

SOH = 1 - (Rbatt - Rinit)/Rinit, Rinit <= Rbatt <= 2Rinit这里,Rinit是电池包的初始内阻,Rbatt是电池包的当前阶段的内阻。相应的SOH在0—1之间变化代表着电池的BOL和EOL。

另外一份研究中,电池的EOL被定义为最大的功率(Pmax)将为原来的(Pinit)70%。公式表示如下:Pmax/Pinit = Rinit/Rbatt这里,Pinit和Rinit是电池初始最大的功率和初始的欧姆内阻,Pmax和Rbatt是电池包一定数量的循环后的当前最大功率和欧姆内阻。

有文献研究表明,电池的极化内阻不是反应电池老化的欧姆内阻。下图就显示了在电池循环过程中其极化内阻和欧姆内阻的变化对比。结果表明,欧姆内阻与极化内阻相比有更高的敏感度。

根据不同的电池包SOH的定义,不同技术已经应用于电池包SOH的估算。通常,上述提到的定义的一个或者组合与适当的测量和估算技术一起使用。好多文献资料中提出了各种SOH的估算技术,考虑一个或多个电池参数,随着电池老化而变化,以得到电池SOH的估算。

以上,就是本期主要分享的关于SOH的介绍,下一篇将给大家带来SOH的估算方法相关内容。我们下期再见啦!

审核编辑:符乾江


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • bms
    bms
    +关注

    关注

    110

    文章

    1196

    浏览量

    69364
  • 电池
    +关注

    关注

    85

    文章

    11356

    浏览量

    141294
  • SOH
    SOH
    +关注

    关注

    0

    文章

    19

    浏览量

    3918
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    储能类电池管理系统BMS HiL解决方案

    在北汇信息HiL测试环境中,可以在不依赖于真实电池组的情况下,为储能BMS提供所需的高压模拟信号、电芯电压与温度传感器信号、母线电流信号以及上层系统的通讯指令,实现储能BMS状态估算算法
    的头像 发表于 11-10 14:18 1116次阅读
    储能类<b class='flag-5'>电池</b>管理系统<b class='flag-5'>BMS</b> HiL解决方案

    基于ST L9963E的汽车辅助电池BMS系统设计与应用

    意法半导体AEK-POW-BMSNOTX电池管理系统 (BMS) 评估板基于L9963E锂离子电池监控和保护芯片,设计用于高可靠性汽车应用。 L9963E主要通过堆栈电压测量、电池电压
    的头像 发表于 10-20 16:00 531次阅读
    基于ST L9963E的汽车辅助<b class='flag-5'>电池</b><b class='flag-5'>BMS</b>系统设计与应用

    BMS电池管理系统测试架构

    基于对BMS测试挑战的深刻理解,费思科技开发了完整的BMS测试解决方案。费思的方案严格参照国标GB/T 34131-2023《电力储能用电池管理系统》和GB/T 38661-2020《电动汽车用
    的头像 发表于 10-10 14:35 279次阅读
    <b class='flag-5'>BMS</b><b class='flag-5'>电池</b>管理系统测试架构

    8串以上BMS电池管理系统数据监测蓝牙传输方案

    电压应用场景中,BMS是锂电池组安全运行的保障核心。BMS系统依托其分布式架构,通过高精度监测和动态均衡技术,结合精准的算法,实现对串联电池
    的头像 发表于 06-23 15:19 544次阅读
    8串以上<b class='flag-5'>BMS</b><b class='flag-5'>电池</b>管理系统数据监测蓝牙传输方案

    BMS simuli<x>nk完整模型(包含:SOC、主动均衡等算法

    BMS simulink完整模型(包含:SOC、主动均衡等算法
    发表于 06-08 09:54 4次下载

    B10 BMS技术知识初探(、下)

    课程名称: BMS技术知识初探课程目标: 可充电电池已是人们生活中不可缺少的组成部分,基于电池技术为基础的电动汽车、储能行业,更是新能源发展的重要标志。而BMS技术是
    发表于 05-02 11:04

    BMS电池管理系统的核心功能及技术挑战

    电子发烧友网报道(文/李弯弯)新能源车电池管理系统BMS是电动汽车和混合动力汽车的核心技术之一,负责监控、控制和优化电池组的性能、安全及寿命。   BMS的核心功能有:其一是
    的头像 发表于 04-26 00:14 2607次阅读

    BMS管理方案NRF52833

    电池的智能化管理,同时提高电池使用寿命。通过 BMS 管理方案,结合手机APP、服务器数据统计分析,实现对电池系统的高效、安全和可靠管理,为相关应用提供坚实的动力保障。 二、系统架构
    发表于 04-22 14:26

    BMS 管理方案 NRF52833

    电池的智能化管理,同时提高电池使用寿命。通过 BMS 管理方案,结合手机APP、服务器数据统计分析,实现对电池系统的高效、安全和可靠管理,为相关应用提供坚实的动力保障。 二、系统架构
    发表于 04-09 16:06

    智能BMS测试仪:电池管理系统的“智慧守护者”

    在新能源汽车、储能系统等电池驱动领域飞速发展的今天,电池管理系统(BMS)的重要性日益凸显。而智能BMS测试仪,作为电池管理系统的“智慧守护
    的头像 发表于 04-09 15:19 3120次阅读

    BMS IC测试:确保电池安全和性能的关键

    电池管理系统(BMS)在管理和保护各领域电池组健康、安全及性能方面发挥着至关重要的作用。从储能系统到消费电子、工业机械及可再生能源领域,任何依赖可充电电池的系统都离不开可靠的
    的头像 发表于 04-02 17:40 1058次阅读
    <b class='flag-5'>BMS</b> IC测试:确保<b class='flag-5'>电池</b>安全和性能的关键

    ​Xyber-BMS​(智能电源管理系统)解析

    Xyber-BMS(智能电源管理系统) 是一种结合先进算法、传感器技术和物联网(IoT)的电源管理解决方案,旨在优化能源使用效率、延长电池寿命并保障设备安全运行。以下是对其核心功能、技术优势和应用场
    的头像 发表于 03-18 11:01 1747次阅读

    芯海科技BMS系列:数字安全认证,守护电池安全

    电池安全筑起了一道坚实的防线。 芯海科技的BMS系列产品,经过严格的数字安全认证,从源头上保障了电池的质量与安全。这一认证不仅证明了BMS系列产品在技术
    的头像 发表于 02-11 14:59 1110次阅读

    nature communications | 未来智能电池技术

    BMS)进行广泛研究,包括监测电池健康状态(SoH)的方法。SoH用于描述电池单元的老化程度,通过将其观察到的比容量与初始容量进行比较而获
    的头像 发表于 01-22 11:22 959次阅读
    nature communications | 未来智能<b class='flag-5'>电池</b>技术

    沃虎BMS隔离变压器介绍

    为了确保电池的安全性、延长使用寿命, BMS电池管理系统 应运而生。电池管理系统(BMS)连接到高能电池
    的头像 发表于 12-30 15:37 761次阅读
    沃虎<b class='flag-5'>BMS</b>隔离变压器<b class='flag-5'>介绍</b>