0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

tensorflow能做什么_tensorflow2.0和1.0区别

姚小熊27 来源:网络整理 作者:网络整理 2020-12-04 14:45 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

tensorflow能做什么

TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor (张量)意味着N维数组, Flow (流)意味着基于数据流图的计算, TensorFlow为张量从流图的一-端流动到另一端计 算过程。TensorFlow是将 复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。TensorFlow可被用于语音识别或图像识别等多项机器学习深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、 大到数千台数据中心服务器的各种设备上运行。TensorFlow将完全开源,任何人都可以用。

tensorflow的作用有:

1、图像风格转换,可以生成各种有意思的图片。

2、给素描黑白画,自动上色。

3、图像描述。

4、人脸方面:推荐猜年龄的应用。

5、reinforcementlearning (强化学习)等等。

tensorflow2.0和1.0区别

今天小编就为大家分享一篇tensorflow2.0与tensorflow1.0的性能区别介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧。

从某种意义讲,tensorflow这个项目已经失败了,要不了几年以后,江湖上再无tensorflow

因为tensorflow2.0 和tensorflow1.0 从本质上讲就是两个项目,1.0的静态图有他的优势,比如性能方面,但是debug不方便,2.0的动态图就是在模仿pytorch,但是画虎不成反类犬.

为了对比1.0 与2.0

1. pip install tensorflow==2.0.0a0

2. 为了控制变量我把mnist保存到本地的mongodb

3. 两种网络结构是一样的

tensorflow2.0 耗时20.7秒

tensorflow2.0 耗时12.46秒,所以在用cpu 做训练时,相同的网络结构,相同的数据集合,tensorflow2.0比tensorflow1.0慢60%,tensorflow 静态图有非常明显的速度优势.

这是tensorflow2.0 在训练时的cpu占用32.3%

这是tensorflow1.0 在训练时的cpu占用63%,这也是tensorflow1.0 的优势,更能发挥硬件的优势。

责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49741

    浏览量

    261565
  • tensorflow
    +关注

    关注

    13

    文章

    331

    浏览量

    61857
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【上海晶珩睿莓1开发板试用体验】TensorFlow-Lite物体归类(classify)

    目前尚未得知睿莓1开发板上面有NPU或者DPU之类的额外处理器,因此使用树莓派系列使用最广泛的TensorFlow-Lite库进行物体归类,使用CPU运行代码,因此占用的是CPU的算力。在
    发表于 09-12 22:43

    ROHS检测仪的1.02.0区别 国产检测设备品牌新机会

    ”。企业在选择检测设备时,必须清晰地认识到1.02.0区别,并着眼于未来法规的持续收紧,选择能够满足当前及未来检测需求的先进设备。
    的头像 发表于 08-22 08:32 760次阅读
    ROHS检测仪的<b class='flag-5'>1.0</b>与<b class='flag-5'>2.0</b><b class='flag-5'>区别</b> 国产检测设备品牌新机会

    无法将Tensorflow Lite模型转换为OpenVINO™格式怎么处理?

    Tensorflow Lite 模型转换为 OpenVINO™ 格式。 遇到的错误: FrontEnd API failed with OpConversionFailure:No translator found for TFLite_Detection_PostProcess node.
    发表于 06-25 08:27

    用树莓派搞深度学习?TensorFlow启动!

    介绍本页面将指导您在搭载64位Bullseye操作系统的RaspberryPi4上安装TensorFlowTensorFlow是一个专为深度学习开发的大型软件库,它消耗大量资源。您可以在
    的头像 发表于 03-25 09:33 965次阅读
    用树莓派搞深度学习?<b class='flag-5'>TensorFlow</b>启动!

    TensorFlow模型转换为中间表示 (IR) 时遇到不一致的形状错误怎么解决?

    使用命令转换为 Tensorflow* 模型: mo --input_model ../models/middlebury_d400.pb --input_shape [1,352,704,6
    发表于 03-07 08:20

    使用OpenVINO™ 2020.4.582将自定义TensorFlow 2模型转换为中间表示 (IR)收到错误怎么解决?

    转换自定义 TensorFlow 2 模型 mask_rcnn_inception_resnet_v2_1024x1024_coco17 要 IR 使用模型优化器命令: 注意上面的链接可能无法
    发表于 03-07 07:28

    将YOLOv4模型转换为IR的说明,无法将模型转换为TensorFlow2格式怎么解决?

    遵照 将 YOLOv4 模型转换为 IR 的 说明,但无法将模型转换为 TensorFlow2* 格式。 将 YOLOv4 darknet 转换为 Keras 模型时,收到 TypeError: buffer is too small for requested array 错误。
    发表于 03-07 07:14

    Tensorflow Efficientdet-d0模型转换为OpenVINO™ IR失败了,怎么解决?

    使用转换命令 mo --saved_model_dir /home/obs-56/effi/saved_model 将 TensorFlow* efficientdet-d0 模型转换为 IR
    发表于 03-06 08:18

    可以使用OpenVINO™工具包将中间表示 (IR) 模型转换为TensorFlow格式吗?

    无法将中间表示 (IR) 模型转换为 TensorFlow* 格式
    发表于 03-06 06:51

    使用各种TensorFlow模型运行模型优化器时遇到错误非法指令怎么解决?

    使用各种 TensorFlow 模型运行模型优化器时遇到 [i]错误非法指令
    发表于 03-05 09:56

    TensorFlow saved_model格式转换为IR遇到错误怎么解决?

    TensorFlow saved_model格式转换为 IR。 遇到错误: FrontEnd API failed with OpConversionFailure: : No translator found for TensorListFromTensor node.
    发表于 03-05 09:12

    为什么无法使用OpenVINO™模型优化器转换TensorFlow 2.4模型?

    --tensorflow_object_detection_api_pipeline_config /ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/pipeline.config
    发表于 03-05 09:07

    OpenVINO™是否与TensorFlow集成支持Raspberry Pi?

    无法确定OpenVINO™是否与 TensorFlow* 集成支持 Raspberry Pi。
    发表于 03-05 08:26

    为什么无法将TensorFlow自定义模型转换为IR格式?

    TensorFlow* 自定义模型转换为 IR 格式: mo --data_type FP16 --saved_model_dir--input_shape (1,150,150,3
    发表于 03-05 07:26

    为什么无法将自定义EfficientDet模型从TensorFlow 2转换为中间表示(IR)?

    将自定义 EfficientDet 模型从 TensorFlow* 2 转换 为 IR 时遇到错误: [ ERROR ] Exception occurred during running replacer \"REPLACEMENT_ID\" ()
    发表于 03-05 06:29