0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Imagination发布最新一代神经网络加速器IP核

Dbwd_Imgtec 来源:芯东西 作者:董温淑 2020-11-18 16:06 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

Imagination Technologies发布了最新一代神经网络加速器IP核IMG Series4 NNA,并将于12月份正式向厂商提供。

芯东西独家获悉,已有汽车领域厂商率先获得IMG Series4 NNA IP授权。

作为NNA IP系列第四代产品,IMG Series4 NNA具备创新的多核架构、高扩展性&高灵活性、超高性能、超低延迟、节省带宽、车规级安全性等功能及特性,可满足汽车、移动设备、数据中心、PC等多种应用场景的AI加速要求。

在这背后,Imagination为IMG Series4 NNA融入了怎样的设计巧思?在神经网络加速成为各行各业普遍需求的当下,IMG Series4 NNA将为满足这一需求拿出怎样的解决方案?

为回答这些问题,芯东西独家专访Imagination人工智能业务高级总监Andrew Grant,以了解IMG Series4 NNA中蕴含的“黑科技”。

01

两年打磨:成就五大核心性能亮点

我们了解到,Imagination第二代、第三代神经网络加速器IP核Series2NX和Series3NX,分别于2017年和2018年推出,两款产品的发布时间相隔一年。

相比之下,最新推出的Series4 IP核与前代产品的推出相隔两年。Andrew Grant向我们透露,2018年以来,Imagination研发团队从软硬件两方面出发,对Series4 IP进行了细致的产品设计。

在硬件层面,Imagination团队在2018年启动对Series4 IP核的研发工作,同步开始对多核(multi-core)技术(IMG 4NX-MC2、MC4、MC6、MC8)进行研发。

同时,Imagination推出其专利的Imagination Tensor Tiling(ITT)技术,可将工作负载分割以获得最优效率。

实际应用时,昨日最新亮相的Series4 NNA IP可凭借多核多集群组合,提供600 TOPS甚至更高算力,同时可为大型神经网络工作负载节省带宽、降低延迟。

其性能优势可概括为五个方面:

1、高度灵活的可扩展方案。

前两代产品均采用单核架构,相比之下,最新推出的Series4 NNA采用多核架构,允许用户集成2个、4个、6个或8个单核,提供灵活的可扩展方案。

2、超高性能。

基于Series4 NNA IP,一个8核集群可提供100 TOPS算力,那么,6个8核集群的解决方案就可以提供600 TOPS算力。

3、超低延迟。

所有内核可以并行处理一个任务,进而相应地降低延迟、缩短响应时间。举例来说,相比单核独立执行的情况,理想状态下8核集群可以把延迟降低至前者的1/8。

4、节省带宽。

Imagination Tensor Tiling技术(ITT),可利用本地数据的依赖性将中间数据保存在片上存储器中,从而将带宽降低多达90%。

5、车规级安全性。

Series4包含IP级别的安全功能且设计流程符合ISO 26262标准(解决汽车电子产品风险的行业安全标准)。

此外,IMG Series4 NNA可运行一系列AI框架,包括Caffe、PyTorch、TensorFlow、PaddlePaddle、Chainer、Cognitive Toolkit、mxnet和Open Neural Network Exchange (ONNX)等。

对神经网络的支持方面,IMG Series4可为CNN、LSTM、RNN等多种神经网络加速,同时支持YOLO v3、Kittiseg等。

02

亮剑四大领域:从PC到汽车都能用

在应用场景上,除了延续前两代产品对移动设备、PC、数据中心等应用场景的支持,Series4 NNA IP特别针对自动驾驶领域、先进驾驶辅助系统(ADAS)等汽车领域应用进行了设计。

在与客户沟通的过程中,Imagination团队了解到,现有车载神经网络加速器IP解决方案存在功耗高等方面的痛点,这正给Imagination提供了“用武之地”。 Andrew说:“我们注意到,现有的多数IP厂商提供的是数据中心、桌面级CPU等解决方案,这些方案功耗比较严重,对车载场景不友好。但Imagination有做移动应用的基因,我们在控制功耗方面有优势。” 除了降低功耗以外,Imagination研发团队还综合考虑了自动驾驶等车载场景对能效、安全性等方面的需求。“(其中)最重要的是‘安全第一’的原则。”Andrew Grant强调。

Imagination研发团队在Series4 NNA独特的多核架构中加入控制器,以最大限度地提升使用效率。在保证功耗低、带宽低的情况下,把算力扩展到业界最大水平。

安全性方面,Series4 NNA采用硬件安全机制,可以保护编译后的网络、网络的执行和数据处理管道。

此外,Andrew Grant补充到,Series4 IP还能与Imagination的车用BXS GPU互补,以实现一个功能更加完善的异构计算平台。Imagination创新的AI协同(AI Synergy)技术,可充分利用NNA和GPU的资源与优势,使AI计算性能、效率再上新台阶。

03

未来4NX产品有望在更多领域落地

Andrew Grant向芯东西透露,目前已经有汽车领域的厂商率先获得了IMG Series4 NNA IP的授权,并正推动产品落地。

谈到Imagination三代NNA IP产品之间的关系,Imagination方面表示,前两代神经网络加速器IP已经达到了Imagination的市场预期,在移动、安防监控、IoT等对算力要求相对较低的应用场景中取得了较好成绩。

比如,展锐(UNISOC)的虎贲T710芯片搭载了2NX,在诸多AI评测中名列前茅,目前已落地于海信F50 5G智能手机、酷派X10 5G手机等;3NX相比2NX,在架构上有很大改良,其功耗、性能、PPA、灵活性均有提升,目前已应用在展锐的T7520芯片里。

相比之下,Series4 NNA IP是一款“Next Level”的产品,适用于更加广阔的场景。

三代产品形成矩阵,可提供不同层次的算力支持。“算力需求大的客户可选择多核心的4NX产品,对算力需求在10T以下的客户可选择3NX解决方案。”Andrew说。

同时,Andrew Grant称:“我们期待能将其(4NX产品)推广到云计算中心、移动边缘计算(MEC)、桌面、安防摄像头、工业自动化等应用领域。中国是一个非常大的市场,有许多芯片公司,我们期待能与这些公司一起有所作为,助力车载、数据中心等应用场景实现提升。”

04

结语:自动驾驶应用蓝海下,车载AI芯片IP迎来利好

5G、AI……一波波浪潮奔涌下,自动驾驶、远程医疗等应用逐渐从传说变为现实,这一过程中,Imagination等先进技术玩家,承担着助推产业浪潮奔涌的角色。

今年三月份,工信部网站公示《汽车驾驶自动化分级》推荐性国家标准报批稿。若该标准正式实施,将是我国第一份自动驾驶分级标准。这意味着国内自动驾驶发展将迎来政策性引导与保障。业内人士称,新的分级标准给行业带来利好,车联网路网基建有望加速,将带来十万亿级别的投资机会。

这一十万亿市场蓝海中,车载AI芯片IP无疑成为一大重要组成部分。

自动驾驶解决方案中,应对数以百计的复杂场景、处理大量的传感器数据、实现自动代客泊车等各类复杂功能,对车载AI芯片应用提出更高要求。 对此,Imagination最新发布的神经网络加速器IP在算力、降低延迟、提升能效等方面具备优势,或能助推自动驾驶应用快速落地。 有关Series4 NNA的更多信息, 请识别下方二维码观看 Imagination的主题会议。

原文标题:600 TOPS超高算力,2~8核灵活配置!Imagination新发布神经网络加速器IP

文章出处:【微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

责任编辑:haq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106802
  • AI
    AI
    +关注

    关注

    89

    文章

    38121

    浏览量

    296682
  • 自动驾驶
    +关注

    关注

    791

    文章

    14671

    浏览量

    176559

原文标题:600 TOPS超高算力,2~8核灵活配置!Imagination新发布神经网络加速器IP

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    神经网络加速器的设计优化方案

    特征图保留不变,完成和所有相关卷积点积以后再加载,最多复用 R*R*M 次。 3.不同网络模型的效果 如图所示,后者相对于前者,减少了连线资源和复杂度。 4.DNN加速器空间架构片上存储
    发表于 10-31 07:14

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    CNN算法简介 我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全连接层。下面是各层作用介绍: 卷积层:提取特征。“不全
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定
    发表于 10-29 06:08

    SNN加速器内部神经元数据连接方式

    的数量级,而且生物轴突的延迟和神经元的时间常数比数字电路的传播和转换延迟要大得多,AER 的工作方式和神经网络的特点相吻合,所以受生物启发的神经形态处理中的NoC或SNN
    发表于 10-24 07:34

    在Ubuntu20.04系统中训练神经网络模型的些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练个手写数字识别的神经
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    在完成神经网络量化后,需要将神经网络部署到硬件加速器上。首先需要将所有权重数据以及输入数据导入到存储内。 在仿真环境下,可将其存于个文件
    发表于 10-20 08:00

    神经网络的并行计算与加速技术

    问题。因此,并行计算与加速技术在神经网络研究和应用中变得至关重要,它们能够显著提升神经网络的性能和效率,满足实际应用中对快速响应和大规模数据处理的需求。神经网络并行
    的头像 发表于 09-17 13:31 888次阅读
    <b class='flag-5'>神经网络</b>的并行计算与<b class='flag-5'>加速</b>技术

    博世推出新一代支持CAN XL的控制IP

    在汽车电气化、智能化、互联化浪潮奔涌向前的今天,高速、可靠的车载通信网络如同车辆的“神经网络”,其性能至关重要。作为车载通信技术的全球领导者,博世汽车电子事业部持续引领创新。我们荣幸地宣布,博世新一代
    的头像 发表于 08-22 17:31 1811次阅读
    博世推出<b class='flag-5'>新一代</b>支持CAN XL的控制<b class='flag-5'>器</b><b class='flag-5'>IP</b>

    Andes晶心科技推出新一代深度学习加速器

    高效能、低功耗 32/64 位 RISC-V 处理与 AI 加速解决方案的领导供货商—Andes晶心科技(Andes Technology)今日正式发表最新深度学习加速器 Ande
    的头像 发表于 08-20 17:43 1843次阅读

    MAX78002带有低功耗卷积神经网络加速器的人工智能微控制技术手册

    的Maxim超低功耗微控制相结合。通过这款基于硬件的卷积神经网络(CNN)加速器,即使是电池供电的应用也可执行AI推理,同时功耗仅为微焦耳级。
    的头像 发表于 05-08 10:16 602次阅读
    MAX78002带有低功耗卷积<b class='flag-5'>神经网络</b><b class='flag-5'>加速器</b>的人工智能微控制<b class='flag-5'>器</b>技术手册

    BP神经网络与卷积神经网络的比较

    多层。 每层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) :
    的头像 发表于 02-12 15:53 1311次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为种常用的机器学习模型,具有显著的优点,同时也存在些不容忽视的缺点。以下是对BP神经网络优缺点的分析
    的头像 发表于 02-12 15:36 1592次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍:
    的头像 发表于 02-12 15:18 1279次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Ba
    的头像 发表于 02-12 15:15 1342次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2256次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法