0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

TinyML推动深度学习和人工智能发展

姚小熊27 来源:TechWeb.com.cn 作者:TechWeb.com.cn 2020-11-03 14:58 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

TinyML是深度学习人工智能领域的最新技术。它带来了在随处可见的微控制器(几乎是最小的电子芯片)中运行机器学习模型的能力。

微控制器是我们每天使用的许多设备的大脑。从电视遥控器到电梯再到智能扬声器,它们无处不在。可以发射遥测数据的多个传感器连接到微控制器。执行器,例如开关和电动机,也连接到同一微控制器。它带有嵌入式代码,可以从传感器获取数据并控制执行器。

TinyML的兴起标志着终端用户消费人工智能方式的重大转变。来自硬件和软件行业的供应商正在合作将人工智能模型引入微控制器。

在电子设备中运行复杂的深度学习模型的能力开辟了许多途径。TinyML不需要边缘、云或互联网连接。它在同一个微控制器上本地运行,该微控制器具有管理连接的传感器和执行器的逻辑。

TinyML的演变

第1阶段-云中的AI

在AI的早期,机器学习模型是在云中训练和托管的。运行AI所需的强大计算能力使云成为理想的选择。开发人员和数据科学家利用高端CPUGPU训练模型,然后托管它们以进行推理。每个消耗AI的应用程序都与云对话。该应用程序将与微控制器通信以管理传感器和执行器。

第二阶段-边缘人工智能

虽然云仍然是人工智能的逻辑家园,但它确实在消耗深度学习模型的同时引入了延迟。想象一下,每次与智能扬声器通话时,请求都会被云处理。往返行程中的延误扼杀了体验。其他场景,如工业自动化、智能医疗、联网车辆等,都要求人工智能模型在本地运行。

边缘计算(云和本地物联网设备之间的管道)已成为在本地托管AI模型的理想选择。在边缘运行的AI不会遭受在云中运行相同AI所带来的延迟。

但是,鉴于边缘资源有限,培训和再培训模型仍然需要云。可以在边缘托管经过训练的模型,以进行推理(使用机器学习模型的过程),而不用于训练。因此,在云中训练模型并将其部署在边缘变得很普遍。这种方法提供了两全其美的优势-用于训练的强大计算环境(云)和用于推理的低延迟托管环境(边缘)。

在边缘使用AI时,微控制器从连接的传感器获取遥测,然后将遥测发送到本地部署的模型以通过应用程序进行推理。然后,模型返回输入数据的预测或分类,用于确定后续步骤。

阶段3-微控制器中的AI

虽然在许多情况下在边缘运行AI是一个完美的解决方案,但是在某些情况下,部署边缘计算层是不切实际的。例如,将诸如智能扬声器和遥控器之类的消费类设备连接到边缘是过大的选择。这增加了设备的总拥有成本和供应商的支持成本。但是这些消费类设备是注入AI功能的温床。

在工业场景中,预测性维护已成为设备的重要组成部分。昂贵的机械设备需要嵌入能够实时检测异常的机器学习模型,以提供预测性维护。通过主动检测故障,客户可以节省数百万美元的维护成本。

直接在微控制器中嵌入AI成为消费和工业物联网场景的关键。这种方法不依赖于外部应用程序,边缘计算层或云。AI模型与嵌入到微控制器的嵌入式代码一起运行。它成为提供无与伦比的速度的整体逻辑的组成部分。

传统上,机器学习模型始终部署在资源丰富的环境中。由于TinyML模型可以嵌入微控制器中,因此它们不会占用大量资源。这种方法是将AI注入物联网设备的最有效,最具成本效益的方法。

TinyML不断发展的生态系统

尽管TinyML尚处于起步阶段,但正在形成一个充满活力的生态系统。电子芯片和物联网套件制造商(例如Adafruit,联发科技,Arduino和STM)正在其设备中支持TinyML。微软的Azure Sphere(安全微控制器)也可以运行TinyML模型。TensorFlow Lite是流行的开源深度学习框架的变体,可以移植到支持的设备上。另一个开源机器学习编译器和运行时Apache TVM也可以用于将模型转换为TinyML。

Always AI、Cartesiam、EdgeImpulse、OctoML和Queexo等新兴的AutoML和TinyML平台正在构建工具和开发环境,以简化针对微控制器的训练和优化模型的过程。

TinyML使AI无处不在,并可供消费者使用。它将为我们每天使用的数百万种设备带来智能。
责任编辑:YYX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微控制器
    +关注

    关注

    48

    文章

    8249

    浏览量

    162341
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261477
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136230
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123900
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    推动“AI+网络安全”深度融合与创新发展

    近年来,人工智能技术的快速发展与应用,正在推动各行各业的深刻变革。特别是在网络安全领域,人工智能的引入为传统安全防护手段提供了前所未有的提升。 数字化转型与
    的头像 发表于 11-14 17:11 952次阅读

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    的框架小 10 倍,速度也快 10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍这对开发人员意味着什么,以及使用 Neuton 模型如何改进您的开发和终端
    发表于 08-31 20:54

    重磅来袭!2026全球人工智能终端展暨第七届深圳人工智能展览会

    深圳国际人工智能展深耕六载,始终紧跟国家人工智能发展方向,通过搭建人工智能技术与行业对话的展示平台,致力于人工智能产业链上下游的
    的头像 发表于 08-26 18:02 484次阅读

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:23

    人工智能技术的现状与未来发展趋势

    人工智能技术的现状与未来发展趋势     近年来,人工智能(AI)技术迅猛发展,深刻影响着各行各业。从计算机视觉到自然语言处理,从自动驾驶到医疗诊断,AI的应用场景不断扩展,
    的头像 发表于 07-16 15:01 1173次阅读

    CES Asia 2025蓄势待发,聚焦低空经济与AI,引领未来产业新变革

    可能性。智能无人机在物流配送、巡检监测等领域的应用愈发成熟,大大提高了工作效率和精准度。低空经济的发展,不仅带动了相关技术的进步,还创造了新的就业机会和经济增长点。 人工智能领域同样发展
    发表于 07-09 10:29

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模
    发表于 07-04 11:10

    Nordic收购 Neuton.AI 关于产品技术的分析

    示例和支持,方便开发者在 Nordic 的各类芯片上实现高效的边缘 AI 应用; 如果对这个AI人工智能应用感兴趣,请评论区联系我们.
    发表于 06-28 14:18

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展深度学习技术的
    的头像 发表于 02-14 11:15 818次阅读

    Stellantis与Mistral AI深化人工智能合作

    近日,Stellantis宣布与Mistral AI进一步扩大人工智能战略合作伙伴关系,旨在将人工智能技术深度整合到车辆工程、车内体验等多个关键领域,共同推动汽车行业的
    的头像 发表于 02-11 15:50 651次阅读

    我国生成式人工智能发展现状与趋势

    作为信息化、数字化、智能化的新型技术基座,生成式人工智能对于提升国家战略地位与国际竞争力具有重要意义。2022年11月以来,随着以ChatGPT为代表的大语言模型迅速发展,生成式人工智能
    的头像 发表于 02-08 11:31 2115次阅读

    数学专业转人工智能方向:考研/就业前景分析及大学四年学习路径全揭秘

    随着AI技术的不断进步,专业人才的需求也日益增长。数学作为AI的基石,为机器学习深度学习、数据分析等提供了理论基础和工具,因此越来越多的数学专业学生开始考虑在人工智能领域
    的头像 发表于 02-07 11:14 1699次阅读
    数学专业转<b class='flag-5'>人工智能</b>方向:考研/就业前景分析及大学四年<b class='flag-5'>学习</b>路径全揭秘

    人工智能和机器学习以及Edge AI的概念与应用

    人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能和机器学习是现代科技的核心技术
    的头像 发表于 01-25 17:37 1573次阅读
    <b class='flag-5'>人工智能</b>和机器<b class='flag-5'>学习</b>以及Edge AI的概念与应用

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速了人工智能发展和应用。包括医疗保健、金融和制造业在内的各
    的头像 发表于 12-23 11:18 869次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来