0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

边缘分析将成为人工智能的下一件大事

我快闭嘴 来源:贤集网 作者:贤集网 2020-09-25 12:06 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

这是来自Sunya OS创始人Nikhil Bhaskaran在物联网2019的一篇演讲,Sunya OS是一个优化了嵌入式系统AI库的操作系统,使开发人员能够以非常低的成本非常快速地构建AI边缘解决方案。在接下来的五年里,人工智能将渗透到一切事物之中;而边缘分析将成为人工智能的下一件大事。

目前人工智能领域的工作更多的是从应用的角度来解决工业问题。人们希望尽快将解决方案推向市场。为此,大多数人工智能库都内置在云中。在这种情况下,有一个很大的堆栈,第一个挑战从数据开始。

你需要训练一个模型,最大的挑战不是创建一个模型,而是找到数据并以一种有效地训练模型的方式安排数据。因此,获取正确的数据有很大的市场。

第二部分是模型的建立。有许多应用程序不需要创建像人脸识别和目标检测这样的模型。因为这些常见的应用程序已经有现成的模型,所以只需要为应用程序选择合适的模型。之后,您需要进一步训练您的模型,因为大多数模型通常针对不同的数据集进行训练,而这些数据集不能提供良好的输出。

由于每个库都擅长某一方面,因此需要仔细选择适合应用程序的正确库。

在有了工作模式之后,必须有目的地使用它来产生足够的资金。一些赚钱的人应该关注的问题是:它(模型)应该用于什么?市场在寻找什么?

除此之外,还有一个主要的竞争,因为人工智能中的每个人都直接在云上进行模型训练和数据工作。然而,人工智能同样可以在嵌入式计算机上运行良好。这通常是人们不知道的。

所有的人工智能都会在边缘发生

在云端运行模型时,通常使用googleengineapi或Amazon的对象识别模型,并为此支付一定的费用。一旦解决方案建立起来,在一段时间内你必须支付大量的钱。

相反,同样的模型可以被编码到硬件上。在嵌入式系统上,您可以获得云的性能,而无需长期付费。所有的分析都在嵌入式设备上进行,它只向云端发送有限的数据。

边缘分析将是人工智能的下一个大事件。AI库发送的所有数据都将由处理器进行计算并给出结果。例如,在过去,当在玩游戏时,所有的数学计算都是在GPU中完成的。现在,芯片上有向量处理单元,可以快速处理来自云端的向量(数据)。

GPU也擅长浮点运算。

人们不知道很多人工智能应用程序可以构建在公司可以优化的芯片上。

今天可用于人工智能的库的数量约为800多个,这听起来可能令人难以置信,但当电脑问世时,人们从来没有想到它竟然这么大。渐渐地,它成为我们生活中的必需品。人工智能将比这个大得多。在接下来的五年里,人工智能将渗透到一切事物之中。很多产品都会内置人工智能。

目前,有二十多家公司从事人工智能技术。其中最受欢迎的有腾讯、Caffe、Chainer、ONNX和PyTorch。

嵌入式系统面临的挑战

在人工智能领域工作的人经常面临诸如模型大小、选择合适的模型和框架等挑战。系统方面的挑战是大多数人没有意识到的。其中包括:

平台

在云中,代码是预先安装的。但是对于嵌入式,您需要获取源代码并将其编译到机器中。

吸引力

找到正确的来源也是一个挑战。人们需要做大量的研究来找到正确的源代码、正确的补丁并配置它们。

体系结构支持

通常使用ARM,它可以是ARM7或ARM8。在ARM8中霓虹灯支持的帮助下,硬件fpu(浮点单元)提供5倍的性能。这是非常有利的,但也具有挑战性。

汇编

交叉编译无法提供所需的性能。因此,要获得性能并使库在硬件上以最佳方式工作,您需要执行本机编译。这需要很长的编码时间,并且消耗大量的时间。

安装

编译后可能会遇到几个错误消息。需要注意正确安装库,尤其是对于新机器。

不仅仅是这些,所有库通常都有一些依赖关系。每个工具/框架/库平均有4-5个依赖项。

这些包也需要编译,以便从安装在嵌入式系统上的AI库中获得最佳性能。称为Docker的软件是运行包的最快方法,但它在运行时并没有得到优化,必须小心使用。

业界有这样一种看法,要想在边缘运行人工智能,你需要大量的计算,或者需要有更好的计算能力,这样才能获得足够的性能。然而,这是不正确的。当这个解决方案被出售时,你的成本会更高。所以,重点应该放在更好的工程上,这样可以降低价格。这应该在不损害最新技术进步的情况下实现。

OpenGL和OpenCL库

在一个嵌入式系统中,当CPU明显存在时,GPU和NPU是可选的。如果你有GPU,那么它将有OpenGL或OpenCL库。OpenGL是一个图形库,它将接收到的图形计算传递给GPU。OpenCL是一个计算库,它检查硬件上的计算能力;它得到的任何计算请求都在系统中分布。通过添加OpenCL,您的性能会非常高。它是一个额外的层,处理请求比操作系统好得多。

在应用程序方面还有很多工作要做。在云中编写代码之后,当您运行它时,分析过程就开始了。在此过程中,代码生成未知数量的威胁,如果系统无法处理这些威胁,这些威胁可能会导致硬件故障。但在嵌入式系统中,它是定制的。

在这里,边缘计算扮演了一个主要角色,它直接在硬件上执行计算操作,而不是将数据发送到云端进行计算。

随着嵌入式人工智能领域的发展,有一些框架只是为这方面而构建的。目前,TVM在这方面做得最好。
责任编辑:tzh

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 嵌入式
    +关注

    关注

    5186

    文章

    20151

    浏览量

    328881
  • AI
    AI
    +关注

    关注

    89

    文章

    38120

    浏览量

    296663
  • 人工智能
    +关注

    关注

    1813

    文章

    49741

    浏览量

    261549
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    边缘计算和人工智能,别再傻傻分不清啦!

    这几年,只要聊到“智能制造”“智慧城市”“自动化工厂”, 边缘计算 和**人工智能(AI)**这两个词就总是成双成对地出现。 但你是不是也有点懵:到底谁在算?谁在“聪明”?它们又是什么关系? 别急
    的头像 发表于 11-19 15:46 135次阅读

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    应用。 为什么选择 Neuton 作为开发人员,在产品中使用边缘人工智能的两个最大障碍是: ML 模型对于您所选微控制器的内存来说太大。 创建自定义 ML 模型本质上是个手动过程,需要高度的数据科学知识
    发表于 08-31 20:54

    AI 边缘计算网关:开启智能新时代的钥匙​—龙兴物联

    计算网关在本地实时分析旦检测到盗窃、斗殴等异常行为,能立即发出警报,极大提高了安防监控的及时性和准确性,同时减轻了云端计算压力,降低了网络成本。​ 丰富的人工智能算法应用,是AI 边缘
    发表于 08-09 16:40

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    家人们,最近在研究人工智能相关设备,挖到了款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 、开箱即学,便捷拉满 这个实验箱真的
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    家人们,最近在研究人工智能相关设备,挖到了款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 、开箱即学,便捷拉满 这个实验箱真的
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文
    发表于 07-31 11:38

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模
    发表于 07-04 11:10

    爱立信携手超微加速边缘人工智能部署

    爱立信与超微 Supermicro近日宣布有意开展战略合作,加速边缘人工智能部署。
    的头像 发表于 06-17 09:42 1.5w次阅读

    如何构建边缘人工智能基础设施

    随着人工智能的不断发展,其争议性也越来越大;而在企业和消费者的眼中,人工智能价值显著。如同许多新兴科技样,目前人工智能的应用主要聚焦于大规模、基础设施密集且高功耗的领域。然而,随着
    的头像 发表于 06-09 09:48 850次阅读

    边缘计算如何颠覆人工智能变革

    2025年以来,DeepSeek发布的大模型热度居高不下,再次点燃了全球对人工智能的无限热情。深度学习模型以指数级速度膨胀,性能不断突破极限,成本效益也在向着更低的趋势发展,这为各行各业带来了颠覆性
    的头像 发表于 05-30 09:29 832次阅读

    NXP技术白皮书:AIoT人工智能物联网 将人工智能与现实世界相连

      分析师将人工智能物联网 (AIoT) 大致定义为人工智能 (AI) 与物联网(IoT)的融合,利用AI让物联网设备变得更智能、更具自主性。但这是
    的头像 发表于 03-28 11:53 1822次阅读
    NXP技术白皮书:AIoT<b class='flag-5'>人工智能</b>物联网 将<b class='flag-5'>人工智能</b>与现实世界相连

    DeepSeek对人工智能领域的启示

    本文作者是 IBM 董事长兼首席执行官 Arvind Krishna。他认为,社会各界不应止步于应用人工智能,更要成为人工智能的共建者。
    的头像 发表于 02-07 09:46 1446次阅读

    文解析2025年后人工智能的发展前景

    本文探讨了人工智能(AI)在不久的将来及远期预期的进步、应用和社会影响。2025年,人工智能将成为各行业的变革性力量,重塑医疗保健、教育、金融、交通和供应链物流等领域。生成式人工智能、自主系统和协
    的头像 发表于 01-20 11:09 3594次阅读

    ASIC芯片会成为AI的下一件大事

    当谷歌宣布其第二代专用集成电路来加速公司的机器学习处理时,笔者的电话开始响个不停,问这对半导体行业的潜在影响。世界上最大的数据中心“Super 7”的其它成员是否都急于为AI制造自己的芯片?这对AI芯片和平台的领先供应商NVIDIA、AMD、Intel等其它公司以及许多希望进入这个利润丰厚市场的初创公司有何影响?当GPU和FPGA开始看起来如此有前途的时候,它们的游戏结束了吗?为了回答这些问题,让我们进入这些互联网巨头的头脑,看看他们可能在
    的头像 发表于 01-02 09:33 937次阅读
    ASIC芯片会<b class='flag-5'>成为</b>AI的<b class='flag-5'>下一件</b><b class='flag-5'>大事</b>吗

    卡诺模型为人工智能领域提供了种全新的视角

    在探索人工智能如何更深层次满足用户需求、提升用户体验的旅程中,卡诺模型(Kano Model)提供了个极具价值的理论框架。这模型不仅为产品开发者带来了深刻的洞察力,同时也为人工智能
    的头像 发表于 12-11 10:17 946次阅读