0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习实战之logistic回归

454398 来源:itpub技术栈 作者:itpub技术栈 2020-09-29 15:17 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

logistic回归是一种广义的线性回归,通过构造回归函数,利用机器学习来实现分类或者预测。

原理

上一文简单介绍了线性回归,与逻辑回归的原理是类似的。

预测函数(h)。该函数就是分类函数,用来预测输入数据的判断结果。过程非常关键,需要预测函数的“大概形式”, 比如是线性还是非线性的。 本文参考机器学习实战的相应部分,看一下数据集。

// 两个特征

-0.017612 14.053064 0

-1.395634 4.662541 1

-0.752157 6.538620 0

-1.322371 7.152853 0

0.423363 11.054677 0

0.406704 7.067335 1

如上图,红绿代表两种不同的分类。可以预测分类函数大概是一条直线。Cost函数(损失函数):该函数预测的输出h和训练数据类别y之间的偏差,(h-y)或者其他形式。综合考虑所有训练数据的cost, 将其求和或者求平均,极为J函数, 表示所有训练数据预测值和实际值的偏差。

显然,J函数的值越小,表示预测的函数越准确(即h函数越准确),因此需要找到J函数的最小值。有时需要用到梯度下降。

具体过程

构造预测函数

逻辑回归名为回归,实际为分类,用于两分类问题。 这里直接给出sigmoid函数。

接下来确定分类的边界,上面有提到,该数据集需要一个线性的边界。 不同数据需要不同的边界。

确定了分类函数,将其输入记做z ,那么

向量x是特征变量, 是输入数据。此数据有两个特征,可以表示为z = w0x0 + w1x1 + w2x2。w0是常数项,需要构造x0等于1(见后面代码)。 向量W是回归系数特征,T表示为列向量。 之后就是确定最佳回归系数w(w0, w1, w2)。cost函数

综合以上,预测函数为:

这里不做推导,可以参考文章 Logistic回归总结

有了上述的cost函数,可以使用梯度上升法求函数J的最小值。推导见上述链接。

综上:梯度更新公式如下:

接下来是python代码实现:

# sigmoid函数和初始化数据

def sigmoid(z):

return 1 / (1 + np.exp(-z))

def init_data():

data = np.loadtxt(‘data.csv’)

dataMatIn = data[:, 0:-1]

classLabels = data[:, -1]

dataMatIn = np.insert(dataMatIn, 0, 1, axis=1) #特征数据集,添加1是构造常数项x0

return dataMatIn, classLabels

复制代码

// 梯度上升

def grad_descent(dataMatIn, classLabels):

dataMatrix = np.mat(dataMatIn) #(m,n)

labelMat = np.mat(classLabels).transpose()

m, n = np.shape(dataMatrix)

weights = np.ones((n, 1)) #初始化回归系数(n, 1)

alpha = 0.001 #步长

maxCycle = 500 #最大循环次数

for i in range(maxCycle):

h = sigmoid(dataMatrix * weights) #sigmoid 函数

weights = weights + alpha * dataMatrix.transpose() * (labelMat - h) #梯度

return weights

// 计算结果

if __name__ == ‘__main__’:

dataMatIn, classLabels = init_data()

r = grad_descent(dataMatIn, classLabels)

print(r)

输入如下:

[[ 4.12414349]

[ 0.48007329]

[-0.6168482 ]]

上述w就是所求的回归系数。w0 = 4.12414349, w1 = 0.4800, w2=-0.6168 之前预测的直线方程0 = w0x0 + w1x1 + w2x2, 带入回归系数,可以确定边界。 x2 = (-w0 - w1*x1) / w2

画出函数图像:

def plotBestFIt(weights):

dataMatIn, classLabels = init_data()

n = np.shape(dataMatIn)[0]

xcord1 = []

ycord1 = []

xcord2 = []

ycord2 = []

for i in range(n):

if classLabels[i] == 1:

xcord1.append(dataMatIn[i][1])

ycord1.append(dataMatIn[i][2])

else:

xcord2.append(dataMatIn[i][1])

ycord2.append(dataMatIn[i][2])

fig = plt.figure()

ax = fig.add_subplot(111)

ax.scatter(xcord1, ycord1,s=30, c=‘red’, marker=‘s’)

ax.scatter(xcord2, ycord2, s=30, c=‘green’)

x = np.arange(-3, 3, 0.1)

y = (-weights[0, 0] - weights[1, 0] * x) / weights[2, 0] #matix

ax.plot(x, y)

plt.xlabel(‘X1’)

plt.ylabel(‘X2’)

plt.show()

如下:

算法改进

随机梯度上升

上述算法中,每次循环矩阵都会进行m * n次乘法计算,时间复杂度是maxCycles* m * n。当数据量很大时, 时间复杂度是很大。 这里尝试使用随机梯度上升法来进行改进。 随机梯度上升法的思想是,每次只使用一个数据样本点来更新回归系数。这样就大大减小计算开销。 算法如下:

def stoc_grad_ascent(dataMatIn, classLabels):

m, n = np.shape(dataMatIn)

alpha = 0.01

weights = np.ones(n)

for i in range(m):

h = sigmoid(sum(dataMatIn[i] * weights)) #数值计算

error = classLabels[i] - h

weights = weights + alpha * error * dataMatIn[i]

return weights

进行测试:

随机梯度上升的改进

def stoc_grad_ascent_one(dataMatIn, classLabels, numIter=150):

m, n = np.shape(dataMatIn)

weights = np.ones(n)

for j in range(numIter):

dataIndex = list(range(m))

for i in range(m):

alpha = 4 / (1 + i + j) + 0.01 #保证多次迭代后新数据仍然有影响力

randIndex = int(np.random.uniform(0, len(dataIndex)))

h = sigmoid(sum(dataMatIn[i] * weights)) # 数值计算

error = classLabels[i] - h

weights = weights + alpha * error * dataMatIn[i]

del(dataIndex[randIndex])

return weights

可以对上述三种情况的回归系数做个波动图。 可以发现第三种方法收敛更快。 评价算法优劣势看它是或否收敛,是否达到稳定值,收敛越快,算法越优。

总结

这里用到的梯度上升和梯度下降是一样的,都是求函数的最值, 符号需要变一下。 梯度意味着分别沿着x, y的方向移动一段距离。(cost分别对x, y)的导数。

完整代码请查看: github: logistic regression

参考文章: 机器学习之Logistic回归与Python实现

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
  • Logistic
    +关注

    关注

    0

    文章

    11

    浏览量

    9049
  • 线性回归
    +关注

    关注

    0

    文章

    41

    浏览量

    4513
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    从0到1,10+年资深LabVIEW专家,手把手教你攻克机器视觉+深度学习(5000分钟实战课)

    “告别检测系统能力缺陷!10+年LabVIEW视觉资深专家手把手教你:5000+分钟高清教程(含工具、算法原理、实战操作、项目优化全流程讲解)”——从传统视觉算法→深度学习建模→工业级部署"
    的头像 发表于 12-02 08:07 114次阅读
    从0到1,10+年资深LabVIEW专家,手把手教你攻克<b class='flag-5'>机器</b>视觉+深度<b class='flag-5'>学习</b>(5000分钟<b class='flag-5'>实战</b>课)

    基于迅为RK3588开发板实现高性能机器狗主控解决方案- AI能力实战:YOLOv5目标检测例程

    基于迅为RK3588开发板实现高性能机器狗主控解决方案- AI能力实战:YOLOv5目标检测例程
    的头像 发表于 11-28 11:32 1022次阅读
    基于迅为RK3588开发板实现高性能<b class='flag-5'>机器</b>狗主控解决方案- AI能力<b class='flag-5'>实战</b>:YOLOv5目标检测例程

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 2638次阅读

    机器学习异常检测实战:用Isolation Forest快速构建无标签异常检测系统

    本文转自:DeepHubIMBA无监督异常检测作为机器学习领域的重要分支,专门用于在缺乏标记数据的环境中识别异常事件。本文深入探讨异常检测技术的理论基础与实践应用,通过IsolationForest
    的头像 发表于 06-24 11:40 1203次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>异常检测<b class='flag-5'>实战</b>:用Isolation Forest快速构建无标签异常检测系统

    辰:国内芯片须踏实前行,回归技术本质

    迷人眼的宣传中,深圳市瑞辰科技却清醒地意识到:突破源于技术!芯片行业发展道阻且长,唯有脚踏实地,加大研发投入,回归技术本质,才能具备真正的竞争力。死磕工艺,国产
    的头像 发表于 06-11 16:50 913次阅读
    瑞<b class='flag-5'>之</b>辰:国内芯片须踏实前行,<b class='flag-5'>回归</b>技术本质

    学电路设计分享学习心得、技术疑问及实战成果

    活动介绍:随着物联网、智能硬件等领域的快速发展,硬件开发与电路设计技能成为电子工程师和创客的核心竞争力。为帮助刚入行的电子小白、高校大学生高效掌握从基础理论到实战应用的能力,电子发烧友平台推出学习
    的头像 发表于 05-20 08:07 440次阅读
    学电路设计分享<b class='flag-5'>学习</b>心得、技术疑问及<b class='flag-5'>实战</b>成果

    十大鲜为人知却功能强大的机器学习模型

    本文转自:QuantML当我们谈论机器学习时,线性回归、决策树和神经网络这些常见的算法往往占据了主导地位。然而,除了这些众所周知的模型之外,还存在一些鲜为人知但功能强大的算法,它们能够以惊人的效率
    的头像 发表于 04-02 14:10 921次阅读
    十大鲜为人知却功能强大的<b class='flag-5'>机器</b><b class='flag-5'>学习</b>模型

    树莓派5 + Hailo AI加速器:工业级数值数据处理实战,打通SQLite与机器学习全链路

    本文讨论了在工业自动化背景下,开发者利用树莓派5和HailoAI加速器进行工业级数值数据处理实战,打通SQLite与机器学习全链路时遇到的问题及解决方案。关键要点包括:1.开发者需求:构建能从
    的头像 发表于 03-25 09:22 1008次阅读
    树莓派5 + Hailo AI加速器:工业级数值数据处理<b class='flag-5'>实战</b>,打通SQLite与<b class='flag-5'>机器</b><b class='flag-5'>学习</b>全链路

    《AI Agent 应用与项目实战》----- 学习如何开发视频应用

    再次感谢发烧友提供的阅读体验活动。本期跟随《AI Agent 应用与项目实战》这本书学习如何构建开发一个视频应用。AI Agent是一种智能应用,能够根据用户需求和环境变化做出相应响应。通常基于深度
    发表于 03-05 19:52

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 626次阅读

    嵌入式机器学习的应用特性与软件开发环境

    作者:DigiKey Editor 在许多嵌入式系统中,必须采用嵌入式机器学习(Embedded Machine Learning)技术,这是指将机器学习模型部署在资源受限的设备(如微
    的头像 发表于 01-25 17:05 1215次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    人工智能机器学习在推荐系统中的应用

    机器学习在推荐系统中发挥着关键作用,提升用户体验和业务价值。 协同过滤算法是常用方法。基于用户行为数据,如购买记录、浏览历史,计算用户或物品间相似度。比如,用户 A 和用户 B 购买过很多相同商品
    的头像 发表于 01-21 16:19 795次阅读

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 1982次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 701次阅读

    zeta在机器学习中的应用 zeta的优缺点分析

    在探讨ZETA在机器学习中的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在机器学习
    的头像 发表于 12-20 09:11 1629次阅读