0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

弛豫铁电材料优异性能的结构起源是铁电材料领域的主要挑战之一

ExMh_zhishexues 来源:知社学术圈 作者:知社学术圈 2020-07-08 08:28 次阅读

弛豫铁电体材料具有优异的物理特性,包括超高压电系数,大介电常数和巨电卡效应,在传感器、执行器和制冷器中具有广泛的应用。弛豫铁电体存在无序结构,目前公认是导致其优异性能的成因。然而,尽管经过了50多年的持续而深入的研究,关于弛豫铁电体的物理模型一直存有争议,《Nature》杂志曾点评弛豫铁电体为“令人绝望的混乱”(“hopeless messes”, Nature 441, 941 (2006))。弛豫铁电材料优异性能的结构起源无疑是铁电材料和凝聚物物理领域的主要挑战之一。

美国宾夕法尼亚州立大学Qing Wang教授课题组通过结合X射线衍射(XRD)、纳米红外光谱(AFM-IR)、电学表征和第一性原理揭示了铁电聚合物材料弛豫特性起源于聚合物的手性。相关论文以题为“Chirality-induced relaxor properties in ferroelectric polymers”发表在Nature Materials上。论文通讯作者为美国宾夕法尼亚州立大学材料系教授Qing Wang,第一作者为美国宾夕法尼亚州立大学材料系博士后Yang Liu。其他作者包括美国宾夕法尼亚州立大学材料系Wenhan Xu, Aziguli Haibibu, Zhubing Han以及美国北卡罗莱纳州立大学物理系Bing Zhang,Wenchang Lu和Jerry Bernholc教授。

手性(chirality),一词源于希腊语“手”χειρ (kheir),在多学科多领域内表示一种重要的不对称性。比如,如果聚合物中分子链上具有镜面不对称碳原子,就会导致聚合物具有手性。2018年,Qing Wang教授课题组在偏氟乙烯-三氟乙烯共聚物P(VDF-TrFE)中证明组分变化可以调控手性排列从而诱导形成准同型相界(MPB),将铁电聚合压电性能的记录提升了近一倍(Nature 562, 96 (2018))。Qing Wang教授团队发现, 随着具有手性的单体TrFE的增加,会引发P(VDF-TrFE)的基态构相由锯齿形向螺旋形的转变,该转变会伴随出现新的弛豫铁电相的出现。这一结果颠覆了人们对弛豫铁电聚合物的认识,因为前人的研究认为P(VDF-TrFE)是铁电相,只有通过电子或离子轰击聚合物才能诱导出弛豫铁电相(Science 280, 2101 (1998))。在此基础上,Qing Wang教授课题组进一步揭示弛豫铁电聚合物具有独特的分子构象无序结构,不同于无机钙钛矿弛豫体(如Pb(Mg1/3Nb2/3)O3-xPbTiO3)中的化学组分无序。研究结果证明手性是导致分子构象无序的至关重要的因素。

图1. a 不同聚合物单体示意图。b 不同铁电聚合物组分的X射线衍射。c P(VDF-TrFE) 65/35 mol%共聚物变温X射线衍射。d 密度泛函理论计算PTrFE不同手性和不同构象下的能量图。e 螺旋型构相内旋角畸变示意图。f 密度泛函理论计算PTrFE螺旋型构相内旋角畸变导致的能量修正。g 力场模拟计算PTrFE螺旋型构相内旋角畸变导致的能量修正。

该团队通过X射线衍射等对现有弛豫铁电聚合物进行结构表征(图1),总结发现了现有弛豫铁电聚合物与PTrFE均聚物具有相同的结构的实验规律。在此基础上,Qing Wang教授团队与Jerry Bernholc教授合作,用第一性原理证明PTrFE均聚物具有螺旋形基态,来源于其独特手性排列。螺旋形构相本身存在畸变,导致螺旋形分子构相的无序。该团队进一步用纳米红外光谱直接证明由手性导致的分子构相无序(图2)。介电谱证实PTrFE及其共聚物是弛豫体(图3)。同时,根据这一模型,该团队成功发现新型弛豫铁电聚合物材料(图3)。

图2. a-c 表面形貌(1×1µm2)。d-e 波数1288 cm-1下的纳米红外光谱。g-i 局域红外光谱。a,d,g 铁电组分共聚物P(VDF-TrFE) 80/20 mol%; b,e,h 弛豫铁电组分共聚物P(VDF-TrFE) 45/55 mol%。c,f,i 弛豫铁电组分共聚物P(TrFE)。

图3. 介电温谱表征: a PTrFE。b P(VDF-TrFE) 45/55 mol%。c PCTFE。d P(VDF-CTFE) 90/10 mol%。

总之,自聚合物材料中发现弛豫特性20多年以来,关于其物理起源一直缺乏清晰的认识,对于弛豫铁电聚合物的理解大多是借用无机钙钛矿弛豫铁电材料的物理模型,缺乏相应的结构依据。此研究结合聚合物的手性特性,提出了手性诱导的分子构象无序物理模型,首次从结构上解释了聚合物弛豫性的物理起源。此模型不仅可以帮助理解铁电聚合物优异性能的成因,比如大电致伸缩效应,巨电卡效应,高储能效率,准同型相界附近压电性显著增强等等,而且成功预测几种新型弛豫铁电聚合物材料。这些研究成果为探索和设计高性能弛豫铁电材料提供了分子尺度上的新思路。
责任编辑:pj

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2526

    文章

    48093

    浏览量

    740062
  • 执行器
    +关注

    关注

    5

    文章

    337

    浏览量

    19202
  • 高压电
    +关注

    关注

    0

    文章

    25

    浏览量

    11433
收藏 人收藏

    评论

    相关推荐

    COMSOL Multiphysics在超材料与超表面仿真中的应用

    材料种具有人工设计的微观结构的新型材料,能够展现出自然界中不存在的物理性质。超表面则是种特殊类型的超
    发表于 02-20 09:20

    AGC 高频/高速 PCB 材料选材指南

    材料,包括热固性和热塑性覆铜板和粘结片 (半固化片),具有优异的电气性能和高可靠性。 热塑性树脂体系材料(聚四氟乙烯,PTFE)适用于射频/微波器件、天线、功率放大器等应用, 其
    发表于 12-06 10:59

    电子封装高散热铜/金刚石热沉材料电镀技术研究

    摘要:随着半导体封装载板集成度的提升,其持续增加的功率密度导致设备的散热问题日益严重。金刚石-铜复合材料因其具有高导热、低膨胀等优异性能,成为满足功率半导体、超算芯片等电子封装器件散热需求的重要候选材料
    的头像 发表于 12-04 08:10 698次阅读
    电子封装高散热铜/金刚石热沉<b class='flag-5'>材料</b>电镀技术研究

    PI材料和CPI材料有什么不同?

    PI材料和CPI材料在化学结构、热稳定性、介电性能、机械性能、加工性能和应用
    的头像 发表于 11-27 10:27 348次阅读
    PI<b class='flag-5'>材料</b>和CPI<b class='flag-5'>材料</b>有什么不同?

    什么是半导体材料的压阻效应?

    将详细讨论半导体材料的压阻效应,包括其起源、机制、应用和未来研究方向。 一、压阻效应的起源 压阻效应是指半导体材料在外力或应力作用下,导电性能
    的头像 发表于 09-19 15:56 1939次阅读

    锂电池用磷酸锂生产流程简介

    种锂离子电池正极材料,化学式为 LiFePO4,主要用于各种锂离子电池。磷酸锂产品质量标准主要依据《锂离子电池用炭复合磷酸
    发表于 09-12 13:22

    白光干涉仪只能测同质材料吗?

    白光干涉仪以白光干涉为原理,广泛应用于材料科学等领域,对各种产品、部件和材料表面的平面度、粗糙度、波纹度、面形轮廓、表面缺陷、孔隙间隙、台阶高度、弯曲变形情况、磨损情况、腐蚀情况、加工情况等表面形貌
    发表于 08-21 13:46

    光电材料是什么?光电材料的应用领域和功能

    光电新材料是指那些在光和电领域具有特殊性能和应用潜力的材料。这类材料在太阳能电池、光纤通信、光电显示等
    的头像 发表于 08-19 11:30 4100次阅读

    石墨烯水分散液在材料科学领域的应用前景怎么样?

    石墨烯水分散液作为一种新型的材料,已经在材料科学领域得到了广泛的应用。首先,石墨烯水分散液可以用于制备石墨烯复合材料。将石墨烯水分散液与其他材料
    的头像 发表于 07-05 10:14 642次阅读

    为什么砷化镓是半导体材料 砷化镓晶体的结构特点

    砷化镓是一种半导体材料。它具有优异的电子输运性能和能带结构,常用于制造半导体器件,如光电器件和功率器件等。砷化镓的禁带宽度较小,使得它在电子和光学应用中具有重要的地位。
    发表于 07-03 16:07 4796次阅读

    二维氮化硼绝缘高导热低介电材料介绍应用

    原料之一,而类似石墨烯结构的六方氮化硼纳米片(BNNS)具有比h-BN更加优异性能。本文综述了BNNS的制备方法、表面修饰以及其聚合物基导热复合
    的头像 发表于 06-30 10:03 2029次阅读
    二维氮化硼绝缘高导热低介电<b class='flag-5'>材料</b>介绍应用

    硅基气凝胶隔热材料的研究进展

    来源 |  Journal of Non-Crystalline Solids  摘要: 硅基气凝胶(SA)以其低密度、超低导热、可设计性强等优异性能在保温领域受到越来越多的关注。然而
    的头像 发表于 06-27 10:53 758次阅读
    硅基气凝胶隔热<b class='flag-5'>材料</b>的研究进展

    英集芯响应市场推出IP2366电源管理芯片,值得关注!

    正极材料是锂电池的核心材料之一,其性能直接影响锂电池的能量密度、安全性、寿命和应用等,占电池总材料成本中的比例超过30%。目前行业内常见的锂
    发表于 06-25 11:51

    有机半导体材料的分子结构性能之间的关系

    有机半导体材料可广泛应用于OLED、OPVC或OFET中,为开发具有优异光电性能的新型有机半导体材料,需要深入研究有机半导体材料的分子
    的头像 发表于 05-23 14:17 998次阅读
    有机半导体<b class='flag-5'>材料</b>的分子<b class='flag-5'>结构</b>与<b class='flag-5'>性能</b>之间的关系

    什么是贴片y电容?主要材料、优势与应用领域介绍!

    Y电容的材料 贴片Y电容的材料种类包括有机材料和陶瓷材料,其中陶瓷材料因其具有优异的温度稳定性、
    的头像 发表于 05-16 14:25 800次阅读
    什么是贴片y电容?<b class='flag-5'>主要</b><b class='flag-5'>材料</b>、优势与应用<b class='flag-5'>领域</b>介绍!