0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于深度学习用于多模态语义学习的简述

独爱72H 来源:网络整理 作者:佚名 2020-04-15 17:33 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

(文章来源:网络整理)

互联网用户所创造的“内容”正在迅猛增长,从不同渠道涌现的文本、图像和视频等不同类型的媒体数据以及用户信息更加紧密混合。它们正在以一种新的形式,更为形象综合地表达语义、主题和事件。针对当前媒体数据呈现出的特点进行深入研究已成为学术热点,多种类型媒体数据依赖共存,各种平台和应用的数据来源广泛,个体和群体参与数据产生的用户交互史无前例。

谷歌的前任研究主管皮特·诺文(Perter Norvig)博士曾在2010年《自然》杂志上发表文章《2020愿景》,指出今后10年,文本、图像、视频等数据以及用户交互信息和各种传感器信息将混合在一起,从搜索角度看,搜索引擎对检索结果进行的是内容综合而非数据罗列,这也将是谷歌今后面临的巨大挑战。我国也同样重视“跨媒体”研究,国家科技部于2011年11月启动了973计划项目“面向公共安全的跨媒体计算理论与方法”,对“跨媒体”的表达建模、语义学习、挖掘推理和搜索排序等核心问题开展了理论研究。目前,媒体计算需要重点解决的两个难点是消除“异构鸿沟”和“语义鸿沟。

传统的媒体计算研究方法主要从手工构建的底层特征出发,利用机器学习方法填补异构鸿沟和语义鸿沟。与传统方法不同深度学习是通过将无监督逐层预训练与有监督微调(fine-tuning)有机结合,实现端到端方式的特征学习。其基本动机是构建多层网络来学习隐含在数据内部的关系,从而使学习得到的特征具有更强的表达力和泛化能力。

在大规模数据上进行的实验表明:通过深度学习得到的特征表示在自然语言处理(词向量学习)、知识图谱构建、图像分类和语音识别等领域表现出良好的性能。例如谷歌研究组在2014年大规模视觉识别挑战赛中采用改进的卷积神经网络GoogLeNet,将图像识别准确率提升到93.3%。

通常,在媒体语义理解过程中可获取不同类型的媒体数据,如:新闻报道包含了文字和文字对应的图像,视频包含了视觉和听觉信息。不同类型的媒体数据从不同侧面反映了高层语义,因此多模态语义学习需要对不同模态的信息进行整合。1976年,麦格克(McGurk)等人验证了人类对外界信息的认知是基于不同感官信息而形成的整体性理解,任何感官信息的缺乏或不准确,都将导致大脑对外界信息的理解产生偏差,这个现象被称为“McGurk现象”。McGurk现象揭示了大脑在进行感知时,不同感官会被无意识地自动结合在一起对信息进行处理。

由于深度学习具有通过逐层抽象来形成良好特征的能力,因此可利用该方法来形成不同类型数据的联合特征表示。具体方法有深度典范相关分析(Deep Caconical Correlation Analysis,Deep CCA)、多模态深度学习以及多模态玻尔兹曼机等。这些方法的基本思路是通过不同的深层模型对不同类型数据进行逐层学习,将学习得到的结果进行合并,以得到多模态联合特征表示,最后要求多模态联合特征能有效重建原始不同类型数据或表达相关语义概念。为了得到更好的深层模型,一般在深层模型的最顶端设计反映不同类型数据相互耦合的损失函数来对模型进行优化反馈。

将深度学习应用于语义概念识别和理解时,有两种方法:(1)将深度学习得到的特征表示直接输入给判别分类模型(如支持向量机等);(2)通过softmax函数或回归函数对输人数据、隐含层和输出层(语义标签)之间的概率分布进行建模,然后基于互信息熵最小或间隔距离最大等准则对模型进行优化。

有人的理论研究结果表明:在机器学习中,如果对模型本身的假设产生偏差,则会影响学习结果。因此,如何合理引入数据本身所具有的先验知识和结构线索,来构造和微调深层模型使之更好地处理多模态数据,是一个亟待解决的问题。因此,一些研究开始在生成式深层模型或区别式深层模型中引入数据本身所具有的先验结构,以提升特征学习的泛化能力和区别能力。有人在卷积神经网络输出端引入层次化概念树来促进关联语义所具有的共享特征的学习,有人通过非参贝叶斯假设来提高判别性语义特征学习的灵活度。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 互联网
    +关注

    关注

    55

    文章

    11321

    浏览量

    108861
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123912
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于学习的外观质量标准判定 精密
    的头像 发表于 11-27 10:19 56次阅读

    亚马逊云科技上线Amazon Nova模态嵌入模型

    Embeddings模态嵌入模型现已在Amazon Bedrock上线,这是一款专为Agentic RAG与语义搜索应用打造的顶尖模态
    的头像 发表于 10-29 17:15 118次阅读
    亚马逊云科技上线Amazon Nova<b class='flag-5'>多</b><b class='flag-5'>模态</b>嵌入模型

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“神经网络”、“黑箱”、“标注”等术语。这些概
    的头像 发表于 09-10 17:38 693次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经网络

    浅析模态标注对大模型应用落地的重要性与标注实例

    ”的关键工序——模态标注重要性日益凸显。 一、什么是模态标注? 模态标注是指对文本、图像、
    的头像 发表于 09-05 13:49 772次阅读

    自动驾驶中Transformer大模型会取代深度学习吗?

    持续讨论。特别是在自动驾驶领域,部分厂商开始尝试将模态大模型(MLLM)引入到感知、规划与决策系统,引发了“传统深度学习是否已过时”的激烈争论。然而,从技术原理、算力成本、安全需求与
    的头像 发表于 08-13 09:15 3919次阅读
    自动驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    研华科技携手创新奇智推出模态大模型AI一体机

    这是一款基于研华高性能边缘计算平台MIC-733,深度集成创新奇智视觉小模型与模态大模型的边缘智能终端,通过创新的“视觉识别 + 深度语义
    的头像 发表于 07-17 17:14 786次阅读
    研华科技携手创新奇智推出<b class='flag-5'>多</b><b class='flag-5'>模态</b>大模型AI一体机

    基于MindSpeed MM玩转Qwen2.5VL模态理解模型

    模态理解模型是让AI像人类一样,通过整合多维度信息(如视觉、语言、听觉等),理解数据背后的语义、情感、逻辑或场景,从而完成推理、决策等任务。
    的头像 发表于 04-18 09:30 2675次阅读
    基于MindSpeed MM玩转Qwen2.5VL<b class='flag-5'>多</b><b class='flag-5'>模态</b>理解模型

    模态交互技术解析

    模态交互 模态交互( Multimodal Interaction )是指通过多种感官通道(如视觉、听觉、触觉等)或多种交互方式(如语音、手势、触控、眼动等)与计算机系统进行自然、
    的头像 发表于 03-17 15:12 3528次阅读

    如何排除深度学习工作台上量化OpenVINO™的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO™特定层
    发表于 03-06 07:31

    照明产品质量分级认证规则(学习用灯具)

    电子发烧友网站提供《照明产品质量分级认证规则(学习用灯具).pdf》资料免费下载
    发表于 02-20 13:43 2次下载

    海康威视发布模态大模型文搜存储系列产品

    模态大模型为安防行业带来重大技术革新,基于观澜大模型技术体系,海康威视将大参数量、大样本量的图文模态大模型与嵌入式智能硬件深度融合,发布
    的头像 发表于 02-18 10:33 1019次阅读

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 819次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1342次阅读

    体验MiniCPM-V 2.6 模态能力

    模态组网
    jf_23871869
    发布于 :2025年01月20日 13:40:48

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器学习 传统机器学习,一般指不基于神经网络的算
    的头像 发表于 12-30 09:16 1982次阅读
    传统机器<b class='flag-5'>学习</b>方法和应用指导