0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Facebook研究开放新框架,让深度学习更加容易

独爱72H 来源:读芯术 作者:读芯术 2020-03-13 15:23 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

(文章来源:读芯术)

FAIR一直是深度学习领域研究和开源框架的定期贡献者。从PyTorch到ONNX, FAIR团队为实现深度学习应用程序的简化做出了不可思议的贡献。在过去几周里,FAIR增加了三个新的系列开源框架。Polygames是一个开源的研究框架,通过自我游戏的方式来训练深度学习网络。Polygames基于著名的“零学习”概念,即允许代理无需进行任何预先设定的训练,而是通过与环境交互来掌握环境。

乍看之下,Polygames似乎与Alpha Zero或ELF OpenGo等其他游戏学习框架类似,但FAIR堆栈也有自己的贡献。对于初学者来说,Polygames支持更广泛的战略游戏列表,如Hex、Havannah、Minishogi、Connect6、Minesweeper、Mastermind、EinStein wurfelt nicht!、Nogo和Othello。他们为研究人员提供了更广泛的环境来测试深度学习网络。

此外,Polygames还以一个巧妙的架构扩展了传统的零学习概念,该架构结合了深度神经网络和蒙特卡罗树搜索方法。这种架构允许网络泛化到更多的任务和环境。Polygames框架的一个意想不到的好处是代理中神经可塑性的创建。Polygames的模型是渐进式的——框架带有一个用于添加新层和通道或增加内核宽度的脚本——它们能够进行热启动训练,允许神经网络随训练成长。

编程模型的角度来看,Polygames提供了一个包含游戏的库,以及一个实现游戏的单文件API。开发人员的经验是基于PyTorch的,因此易于上手。

FAIR团队在Polygames上取得了一些里程碑式的成绩,包括在Hex19游戏中击败人类顶级玩家。该游戏由诗人、数学家皮特·海因(Piet Hein)、 约翰·纳什(John Nash)和经济学家于20世纪40年代开发,它挑战了一些传统的人类游戏思维过程。规则很简单。黑色和白色依次填充一个空单元格。如果把北方和南方连接起来,黑人就赢了;如果把西方和东方连接起来,白人就赢了。馅饼规则使游戏更加公平:在第二次移动时,第二个玩家可以决定交换颜色。这款游戏之所以困难,是因为作为一款连接游戏,它的奖励是基于全局而非局部的标准。

在一系列的实验中,Polygames在Hex游戏中击败了人类中的顶尖玩家。结果如下图所示,在图中,人类玩家操纵白色棋子。第一个图像表示Hex的开局。在游戏的第二阶段,人类(白色)似乎赢了——两个坚实的组分别连接到东和西,并互相互靠近连接。然而,Polygames能够扭转这种局面,创造了一个相当复杂的中心位置。随着Polygames使用两个可能的路径之一,它找到了一个成功的组合并展开了这个位置。

PyTorch3D是一个用于在3D环境中训练深度学习网络的框架。尽管有大量的视觉智能系统需要在现实环境中运行,但在3D环境中训练这类智能体的工具和框架仍然受到高度限制。PyTorch3D是一个高度模块化和优化的库,具有独特的功能,旨在让使用PyTorch的3D深度学习更容易。PyTorch3D为快速可微的3D数据提供了一组常用的3D操作符和损失函数,以及一个模块化可微绘制API,使研究人员能够立即将这些函数导入当前最先进的深度学习系统。

PyTorch3D利用了最近在3D深度学习方面的几个最新里程碑,如FAIR的MeshR-CNN,它实现了复杂室内空间图像的完整3D对象重建。该框架还使用Detectron2,这是一个高度优化的2D识别库,可以成功将对象理解推向第三维。PyTorch3D处理旋转和3D转换的功能也是创建C3DPO的核心,C3DPO是一种使用较少注释的训练数据学习图像和3D形状之间关联的新方法。

探索高维数据是深度学习应用的挑战之一。HiPlot是一个交互式可视化工具,它帮助人工智能研究人员发现高维数据中的相关性和模式,并使用平行图和其他图形方式来表示信息。HiPlot使用一种称为平行图的技术,这是一种可视化和过滤高维数据的方便做法。

从功能的角度来看,HiPlot与其他可视化工具相比有以下几个优势:交互性:在HiPlot中,平行图是交互式的,这使得在不同的场景中可视化很容易。例如,你可以专注于沿着一个或多个轴获取范围或值,根据另一个轴设置配色方案,重新排序或删除轴,或提取特定的数据选择。简洁性:使用Hiplot只需要几行代码。通过带有“Hiplot”命令的服务器,就可以通过一个给定的URL访问它,并使用它来可视化、管理和共享实验。基于种群的训练可视化:HiPlot提供了一种简单的方法来可视化XY图中基于种群的训练实验,该图中,不同数据点之间是有边缘的。这种可视化在深度学习实验中非常普遍。

在深度学习的几个领域,Facebook的FAIR团队还在继续创新,并积极为开源社区做出贡献。PyTorch3D、Polygames和HiPlot是FAIR的最新贡献,旨在实现深度学习应用程序的简化。
(责任编辑:fqj)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • Facebook
    +关注

    关注

    3

    文章

    1432

    浏览量

    58321
  • 深度学习
    +关注

    关注

    73

    文章

    5590

    浏览量

    123890
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何深度学习机器视觉的应用场景

    深度学习视觉应用场景大全 工业制造领域 复杂缺陷检测:处理传统算法难以描述的非标准化缺陷模式 非标产品分类:对形状、颜色、纹理多变的产品进行智能分类 外观质量评估:基于学习的外观质量标准判定 精密
    的头像 发表于 11-27 10:19 43次阅读

    无压烧结银膏在框架容易发生树脂析出的原因和解决办法

    烧结优化的产品,但其配方可能对某些特定的基板或工艺条件更为敏感。树脂成分如果与某些框架镀层的兼容性不佳,就容易发生分离和析出。 系统的解决办法 解决这个问题需要从基板、工艺和设备三方面系统性地进行排查
    发表于 10-08 09:23

    如何在机器视觉中部署深度学习神经网络

    图 1:基于深度学习的目标检测可定位已训练的目标类别,并通过矩形框(边界框)对其进行标识。 在讨论人工智能(AI)或深度学习时,经常会出现“神经网络”、“黑箱”、“标注”等术语。这些概
    的头像 发表于 09-10 17:38 676次阅读
    如何在机器视觉中部署<b class='flag-5'>深度</b><b class='flag-5'>学习</b>神经网络

    自动驾驶中Transformer大模型会取代深度学习吗?

    [首发于智驾最前沿微信公众号]近年来,随着ChatGPT、Claude、文心一言等大语言模型在生成文本、对话交互等领域的惊艳表现,“Transformer架构是否正在取代传统深度学习”这一话题一直被
    的头像 发表于 08-13 09:15 3910次阅读
    自动驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    深度学习遇上嵌入式资源困境,特征空间如何破局?

    近年来,随着人工智能(AI)技术的迅猛发展,深度学习(Deep Learning)成为最热门的研究领域之一。在语音识别、图像识别、自然语言处理等领域,深度
    发表于 07-14 14:50 1114次阅读
    当<b class='flag-5'>深度</b><b class='flag-5'>学习</b>遇上嵌入式资源困境,特征空间如何破局?

    大模型推理显存和计算量估计方法研究

    ,如乘法、加法等; (2)根据各层计算操作的类型和复杂度,确定每层所需的计算量; (3)将各层计算量相加,得到模型总的计算量。 基于硬件加速的算力估计 随着硬件加速技术的发展,许多深度学习框架支持
    发表于 07-03 19:43

    思岚科技AI工业机器人开放底盘Phoebus P350全新发布:深度学习导航+300KG负载

    工业4.0时代,智能搬运的“底盘力”决定效率天花板。 SLAMTEC全新推出 Phoebus P350工业级机器人底盘 ,以 “开放AI架构+深度学习导航” 为核心,融合300KG超强负载、60cm
    的头像 发表于 05-12 11:33 779次阅读
    思岚科技AI工业机器人<b class='flag-5'>开放</b>底盘Phoebus P350全新发布:<b class='flag-5'>深度</b><b class='flag-5'>学习</b>导航+300KG负载

    百度飞桨框架3.0正式版发布

    大模型训练成本高?推理效率低?硬件适配难? 4月1日,百度发布 飞桨框架3.0正式版 !五大特性专为大模型设计。 作为大模型时代的Infra“基础设施”,深度学习框架的重要性愈发凸显,
    的头像 发表于 04-02 19:03 1038次阅读
    百度飞桨<b class='flag-5'>框架</b>3.0正式版发布

    嵌入式AI技术之深度学习:数据样本预处理过程中使用合适的特征变换对深度学习的意义

      作者:苏勇Andrew 使用神经网络实现机器学习,网络的每个层都将对输入的数据做一次抽象,多层神经网络构成深度学习框架,可以深度理解数
    的头像 发表于 04-02 18:21 1277次阅读

    如何排除深度学习工作台上量化OpenVINO™的特定层?

    无法确定如何排除要在深度学习工作台上量化OpenVINO™特定层
    发表于 03-06 07:31

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 818次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1338次阅读

    OpenAI发布深度研究智能体功能

    近日,OpenAI正式推出了面向深度研究领域的智能体产品——深度研究(Deep Research)功能。这一创新功能旨在支持多领域的高强度知识工作者,提升他们的工作效率和
    的头像 发表于 02-05 15:05 878次阅读

    VCE05系列封装和开放框架宽输入AC-DC电源XP POWER

    VCE05系列封装和开放框架宽输入AC-DC电源XP POWERVCE05是XP POWER一系列开放框架和封装式AC-DC单输出电源,专门针对低成本ITE和工业应用需求设计。VC
    发表于 01-24 08:41

    AUTOSAR通信框架的优势 AUTOSAR通信实例与应用场景

    AUTOSAR通信框架的优势 AUTOSAR(AUTomotive Open System ARchitecture)是一个全球性的汽车软件架构合作伙伴计划,旨在创建并建立一个开放的标准化软件架构
    的头像 发表于 12-17 14:58 1704次阅读