0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

大数据能做些什么,应该关注哪些方面

汽车玩家 来源:快资讯 作者:简书 2019-11-19 16:04 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

大数据出现的时间只有十几年,被人们广泛接受并应用只有几年的时间,但就是这短短几年的时间,大数据呈现出爆炸式增长的态势。在各个领域,大数据的身影几乎无处不在。今天我们通过一些大数据典型的应用场景分析,一起来看看大数据到底能做些什么,我们学大数据究竟有什么用,应该关注大数据的哪些方面。

大数据在医疗健康领域的应用

健康医疗领域是最近几年获得最多创业者和投资人青睐的大数据领域。为什么这么说呢?首先,医疗健康领域会产生大量的数据;其次,医疗健康领域有一个万亿级的市场规模;最关键的是,医疗健康领域里很多工作依赖人的经验,而这正是机器学习的强项。医学影像智能识别

图像识别是机器学习获得的重大突破之一,使用大量的图片数据进行深度机器学习训练,机器可以识别出特定的图像元素,比如猫或者人脸,当然也可以识别出病理特征。

比如X光片里的异常病灶位置,是可以通过机器学习智能识别出来的。甚至可以说医学影像智能识别在某些方面已经比一般医生拥有更高的读图和识别能力,但是鉴于医疗的严肃性,现在还很少有临床方面的实践。

虽然在临床实践方面应用有限,但是医疗影像AI还是在一些领域取得一定的进展。医学影像智能识别,一方面可以帮助医生进行辅助诊疗,另一方面对于皮肤病等有外部表现的病症,病人可以自己拍照然后使用AI智能识别做一个初步诊断。

病历大数据智能诊疗

病历,特别是专家写的病历,本身就是一笔巨大的知识财富,利用大数据技术将这些知识进行处理、分析、统计、挖掘,可以构成一个病历知识库,可以分享给更多人,即构成一个智能辅助诊疗系统。下面这张图是我曾经参与设计过的一个医疗辅助诊疗系统的架构。

针对同类疾病和其他上下文信息(化验结果、病史、年龄性别、病人回访信息等)可以挖掘出针对同样的疾病情况,哪种治疗手段可以用更低的治疗成本、更少的病人痛苦,获得更好的治疗效果。从上面的架构图你能看到,将这些病历知识和循证医学知识、科研文献知识、用药知识共同构成一个辅助诊疗知识库,通过知识匹配搜索引擎可以对外提供服务。患者或者医生录入病史、检查结果等信息,系统匹配初步诊断结果,搜索诊疗计划,产生多个辅助诊疗建议,供患者和医生进行参考。

大数据在教育领域的应用

教育倡导“因人施教”,但是在传统教育过程中要做到因人施教,需要老师本身能力很强才能把握好。但是大数据在线教育利用大数据技术进行分析统计,完全可以做到根据学生能力和学习节奏,及时调整学习大纲和学习进度,提供个性化和自适应的学习体验。除此之外,人工智能在教育的其他方面也取得很好的进展。AI外语老师

得益于语音识别和语音合成技术的成熟(语音识别与合成技术同样是利用大数据技术进行机器学习与训练),一些在线教育网站尝试用人工智能外语老师进行外语教学。这里面的原理其实并不复杂,聊天机器人技术已经普遍应用,只要将学习的知识点设计进聊天的过程中,就可以实现一个简单的AI外语老师了。

智能解题

比较简单的智能解题系统其实是利用搜索引擎技术,在收集大量的试题以及答案的基础上,进行试题匹配,将匹配成功的答案返回。这个过程看起来就像智能做题一样,表面看给个题目就能解出答案,而实际上只是找到答案。

进阶一点的智能解题系统,通过图像识别与自然语言处理(这两项技术依然使用大数据技术实现),进行相似性匹配。更改试题的部分数字、文字表述,但是不影响实质性解答思路,依然可以解答。

高阶的智能解题系统,利用神经网络机器学习技术,将试题的自然语言描述转化成形式语言,然后分析知识点和解题策略,进行自动推导,从而完成实质性的解题。

大数据在社交媒体领域的应用

大数据有一个重要的、和我们大多数人密切相关,但是又不太引人注目的一个应用领域是舆情监控与分析。我们日常在各种互联网应用和社交媒体上发表各种言论,这些言论事实上反映了最准确的民情舆论。一个个体的言论基本没有意义,但是大量的、全国乃至全球的言论数据表现出的统计特性,就有了非常重要的意义。

编写数据爬虫,实时爬取各个社交新媒体上的各种用户内容和媒体信息,然后通过自然语言处理,就可以进行情感分析、热点事件追踪等。舆情实时监控可用于商业领域,引导智能广告投放;可用于金融领域,辅助执行自动化股票、期权、数字货币交易;可用于社会管理,及时发现可能引发社会问题的舆论倾向。

在美国总统大选期间,候选人就曾雇佣大数据公司利用社交媒体的数据进行分析,发现选票可能摇摆的地区,有针对性前去进行竞选演讲。并利用大数据分析选民关注的话题,包装自己的竞选主张。Facebook也因为授权大数据公司滥用自己用户的数据而遭到调查和谴责,市值蒸发了数百亿美元。

大数据在金融领域的应用

大数据在金融领域应用比较成熟的是大数据风控。在金融借贷中,如何识别出高风险用户,要求其提供更多抵押、支付更高利息、调整更低的额度,甚至拒绝贷款,从而降低金融机构的风险?事实上,金融行业已经沉淀了大量的历史数据,利用这些数据进行计算,可以得到用户特征和风险指数的曲线(即风控模型)。当新用户申请贷款的时候,将该用户特征带入曲线进行计算,就可以得到该用户的风险指数,进而自动给出该用户的贷款策略。

利用股票、外汇等历史交易记录,分析交易规律,结合当前的新闻热点、舆论倾向、财经数据构建交易模型,进行自动化交易,这就是金融领域的量化交易。这些数据量特别巨大,交易涉及金额也同样巨大,所以金融机构在大数据领域常常不惜血本,大手笔投入。

大数据在新零售领域的应用

区别于传统零售,新零售使用大数据进行全链路管理。从生产、物流、购物体验,使用大数据进行分析和预判,实现精准生产、零库存、全新的购物体验。

亚马逊Go无人店使用大量的摄像头,实时捕捉用户行为,判断用户取出还是放回商品、取了何种商品等。这实际上是大数据流计算与机器学习的结合,最终实现的购物效果是,无需排队买单,进去就拿东西,拿好了就走,超级科幻有没有。

虽然无人店现在看起来噱头的意味更多一点,但是利用大数据技术提升购物体验、节省商家人力成本一定是正确的方向。

大数据在交通领域的应用

交通也是一个对大数据实时采集与处理应用比较广的领域。现在几乎所有的城市路段、交通要点都有不止一个监控摄像头在实时监控,一线城市大约有百万计的摄像头在不停地采集数据。这些数据一方面可以用于公共安全,比如近年来一些警匪片里会有一些场景:犯罪嫌疑人驾车出逃,警方只要定位了车辆,不管它到哪里,系统都可以自动调出相应的摄像头,实时看到现场画面。应该说这项技术已经成熟,大数据流计算可以对百万计的流数据实时处理计算,电影里的场景计算其实并不复杂。

此外,各种导航软件也在不停采集数据,通过分析用户当前位置和移动速度,判断道路拥堵状态,并实时修改推荐的导航路径。你如果经常开车或者打车,对这些技术一定深有体会。

还有就是无人驾驶技术,无人驾驶就是在人的驾驶过程中实时采集车辆周边数据和驾驶控制信息,然后通过机器学习,获得周边信息与驾驶方式的对应关系(自动驾驶模型)。然后将这个模型应用到无人驾驶汽车上,传感器获得车辆周边数据后,就可以通过自动驾驶模型计算出车辆控制信息(转向、刹车等)。计算自动驾驶模型需要大量的数据,所以我们看到,这些无人驾驶创业公司都在不断攀比自己的训练数据有几十万公里、几百万公里,因为训练数据的量意味着模型的完善程度。

小结

正如我前面所说,利用大数据和机器学习,发掘数据中的规律,进而对当前的事情做出预测和判断,使机器表现出智能的特性,正变得越来越普及。

大数据主要来自企业自身所产生,还有一些数据来自互联网,通过网络爬虫可以获取;再有就是公共数据,比如气象数据等。所有这些数据汇聚在一起,计算其内在的关系,可以发现很多肉眼和思维无法得到的知识。然后进一步计算其内在的模型,可以使系统获得智能的特性。当系统具备智能的特性,可以使机器对当前的事情做出预测和判断,正如我今天和你聊的,大数据技术应用正变得越来越普及。

但是,这些数据通常非常巨大,存储、计算、应用都需要一套不同以往的技术方案。通过前面3期内容,我带你了解了大数据技术和应用的发展史,以及当今大数据典型的应用领域。从第4期开始,我将会从大数据主要产品的架构原理、大数据分析与应用、数据挖掘与机器学习算法等几个维度,全面讲解大数据的方方面面,相信你一定有所收获。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 医疗健康
    +关注

    关注

    2

    文章

    292

    浏览量

    26580
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136233
  • 大数据
    +关注

    关注

    64

    文章

    9029

    浏览量

    143065
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    低噪声开关电源的用途有哪些?

    我们在某些行业用低噪声电源能有效提高小信号的提取质量,想知道还能用在哪些方面。 现在能做到噪声峰峰值万分之一到十万分之一的水准。
    发表于 12-01 19:19

    蜂鸟e203移植要从哪些方面入手,在bsp中哪里修改引脚对应关系,约束文件?

    蜂鸟e203移植要从哪些方面入手,在bsp中哪里修改引脚对应关系,约束文件,跪求大神
    发表于 11-10 07:11

    御控工业物联网大数据解决方案:排水设备远程监控与大数据统计系统

    御控工业物联网推出排水设备远程监控与大数据统计系统,通过物联网、大数据、云计算等技术构建“感知-传输-分析-决策”闭环管理体系,助力排水行业数字化转型。
    的头像 发表于 09-12 10:04 490次阅读

    机器人将改变世界,我们应该做些什么

    行业陷入极致内卷的困境,他深入剖析了价格战背后的技术同质化问题,并提出了企业应该“聚焦细分领域、构建综合成本优势、强化差异化” 三大策略破局,形成真正的核心竞争力。 华成工控作为一家专注于工业自动化控制领域的国家高新技术
    的头像 发表于 06-27 09:08 286次阅读
    机器人将改变世界,我们<b class='flag-5'>应该做些</b>什么

    EDA是什么,有哪些方面

    方面及其核心内容: 一、核心功能与流程 设计输入:支持原理图绘制、硬件描述语言(如Verilog、VHDL)编写,将设计思路转化为计算机可识别的形式。 仿真与验证:通过电路仿真(如SPICE)、功能
    发表于 06-23 07:59

    AI语音控制模块能做些什么

    响应 WT3000A 无线语音模组在语言交互方面表现出色,支持多达 51 种语言的识别与响应,且能实现毫秒级的语音交互响应。这意味着无论是国内不同方言地区的用户,还是来自世界各地的使用者,都能通过母语与搭载该模块的设备顺畅沟通。在智能家居场景中
    的头像 发表于 06-18 11:48 750次阅读
    AI语音控制模块<b class='flag-5'>能做些</b>什么

    更改最大数据包大小时无法识别USB设备如何解决?

    将生产者 EP 端点描述符中的最大数据包大小从 1024 字节更改为 512 字节时,无法识别 USB 设备。 请告知如何解决这个问题。
    发表于 05-20 08:13

    边缘计算网关的实时监控与预测性维护都有哪些方面?适合哪些行业使用?

    边缘计算网关的实时监控与预测性维护都有哪些方面?适合哪些行业使用? 有实施过得案例的介绍吗? 深控技术的不需要点表的边缘计算网关如何?
    发表于 04-01 09:44

    大数据与云计算是干嘛的?

    大数据与云计算是支撑现代数字化技术的两大核心。大数据专注于海量数据的采集、存储、分析与价值挖掘;云计算通过虚拟化资源池提供弹性计算、存储及服务能力。两者结合,共同赋能企业决策、业务创新和效率提升。下面UU云小编将详细剖析
    的头像 发表于 02-20 14:48 1272次阅读

    大数据云计算都需要考什么证书?

    大数据和云计算领域包含多种专业证书,其中大数据领域涵盖数据分析类证书、大数据工程类证书、数据治理类证书。云计算领域领域涵盖云计算技术类证书、
    的头像 发表于 02-19 11:05 1192次阅读

    调试ADS8364采集电压数据,DSP中断接收到的数据都是0x7FFF或者都是些很小的数据,为什么?

    信号,都是正常的,还有电源也是正常的,但是就DSP得到的数据不对,这是怎么回事?有做过ADS8364的能不能提点建议?我该从哪些方面入手检查出问题?
    发表于 02-07 08:18

    THS4521采集出来的数据不准确,误差特别大怎么解决?THS4521的输入阻抗如何计算呢?

    , 为14555,根据公式计算后约为4.338mv,误差太大了。 请问各位,应该哪些方面查找问题以及THS4521的输入阻抗如何计算呢?
    发表于 02-06 08:42

    请问ADS1263能做到多高精度?实现高精度应该注意什么?

    我想实现每通道10K以上采样率,测量范围为-500mV ~+500mV,请问ADS1263能做到多高精度?实现高精度应该注意什么,比如电压基准源应该选用什么器件?应该选用什么电源器件
    发表于 01-01 06:28

    智慧城市可以实现哪些方面的监测

    智慧城市通过集成物联网、大数据、云计算、人工智能等前沿技术,实现了对城市运行状态的全面、实时、精准的监测。这种监测覆盖了城市的多个关键领域,为城市管理提供了强有力的数据支持,推动了城市的可持续发展
    的头像 发表于 12-26 14:53 727次阅读

    缓存对大数据处理的影响分析

    缓存对大数据处理的影响显著且重要,主要体现在以下几个方面: 一、提高数据访问速度 在大数据环境中,数据存储通常采用分布式存储系统,
    的头像 发表于 12-18 09:45 1108次阅读