0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

对于机器学习的熟练度分析和介绍

MATLAB 来源:djl 2019-09-11 16:10 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

机器学习是一种数据分析技术,让计算机执行人和动物与生俱来的活动:从经验中学习。

技能挑战

MATLAB 微信公众号回复【M测试】,10 道选择题考验你的机器学习技能!敢来试试吗?

机器学习算法使用计算方法直接从数据中“学习”信息,而不依赖于预定方程模型。当可用于学习的样本数量增加时,这些算法可自适应提高性能。随着大数据应用增加,机器学习已成为解决以下领域问题的一项关键技术:

计算金融学,用于信用评估和算法交易

图像处理和计算机视觉,用于人脸识别、运动检测和对象检测

计算生物学,用于肿瘤检测、药物发现和 DNA 序列分析

能源生产,用于预测价格和负载

汽车、航空航天和制造业,用于预见性维护

自然语言处理,用于语音识别应用

视频:什么是机器学习?

机器学习算法能够在产生洞察力的数据中发现自然模式,帮助您更好地制定决策和做出预测。医疗诊断、股票交易、能量负荷预测及更多行业每天都在使用这些算法制定关键决策。例如,媒体网站依靠机器学习算法从数百万种选项中筛选出为您推荐的歌曲或影片。零售商利用这些算法深入了解客户的购买行为。

何时应该使用机器学习?

当您遇到涉及大量数据和许多变量的复杂任务或问题,但没有现成的处理公式或方程式时,可以考虑使用机器学习。例如,如果您需要处理以下情况,使用机器学习是一个很好的选择:

对于机器学习的熟练度分析和介绍

机器学习的工作原理

机器学习采用两种技术:监督式学习和无监督学习。监督式学习根据已知的输入和输出训练模型,让模型能够预测未来输出;无监督学习从输入数据中找出隐藏模式或内在结构。

对于机器学习的熟练度分析和介绍

监督式机器学习能够根据已有的包含不确定性的数据建立一个预测模型。监督式学习算法接受已知的输入数据集(包含预测变量)和对该数据集的已知响应(输出,响应变量),然后训练模型,使模型能够对新输入数据的响应做出合理的预测。

监督式学习采用分类和回归技术开发预测模型。

分类技术可预测离散的响应—如果您的数据能进行标记、分类或分为特定的组或类,则使用分类。

用于实现分类的常用算法包括:支持向量机 (SVM)、提升 (boosted) 决策树和袋装 (bagged)决策树、k-最近邻、朴素贝叶斯 (Naïve Bayes)、判别分析、逻辑回归和神经网络

回归技术可预测连续的响应—如果您在处理一个数据范围,或您的响应性质是一个实数(比如温度,或一件设备发生故障前的运行时间),则使用回归方法。

常用回归算法包括:线性模型、非线性模型、规则化、逐步回归、提升 (boosted)和袋装 (bagged)决策树、神经网络和自适应神经模糊学习。

无监督学习可发现数据中隐藏的模式或内在结构。这种技术可根据未做标记的输入数据集得到推论。

聚类是一种最常用的无监督学习技术。这种技术可通过探索性数据分析发现数据中隐藏的模式或分组。

用于执行聚类的常用算法包括:k-均值和 k-中心点(k-medoids)、层次聚类、高斯混合模型、隐马尔可夫模型、自组织映射、模糊 c-均值聚类法和减法聚类。

入门视频

在 MATLAB 微信公众号回复【机器学习入门教程】,获取《机器学习快速入门》系列视频,全面介绍实用的 MATLAB 机器学习方法,包括:

线性回归

判别分析

决策树

支持向量机(SVM)

k近邻算法(K-NN)

k均值聚类算法(k-means)

选择合适的机器学习算法

没有最佳方法或万全之策。找到正确的算法只是试错过程的一部分——即使是经验丰富的数据科学家,也无法说出某种算法是否无需试错即可使用。但算法的选择还取决于您要处理的数据的大小和类型、您要从数据中获得的洞察力以及如何运用这些洞察力。

下面是选择监督式或者无监督机器学习的一些准则:

在以下情况下选择监督式学习:您需要训练模型进行预测(例如温度和股价等连续变量的值)或者分类(例如根据网络摄像头的录像片段确定汽车的技术细节)。

在以下情况下选择无监督学习:您需要深入了解数据并希望训练模型找到好的内部表示形式,例如将数据拆分到集群中。

MATLAB 机器学习

如何借助机器学习的力量,使用数据做出更好的决策?MATLAB 让机器学习简单易行。借助用于处理大数据的工具和函数,以及让机器学习发挥作用的应用程序,MATLAB 是将机器学习应用于您的数据分析的理想环境。

使用 MATLAB,工程师和数据科学家可以立即访问预置的函数、大量的工具箱以及用于分类、回归和聚类的专门应用程序。MATLAB 可以做到:

比较各种方法,例如逻辑回归、分类树、支持向量机、集成方法和深度学习

使用模型精化和缩减技术创建能够最好地捕捉预测能力的精确模型。

将机器学习模型集成到企业系统、集群和云中,并且将模型定位于实时嵌入式硬件。

为嵌入式传感器分析工具执行自动代码生成。

支持从数据分析到部署的集成工作流程。

有趣的应用

机器学习算法实现艺术鉴赏

小即是好—昆虫大脑完胜机器学习

AI 基因植入您的工作流程

MATLAB 填补数据科学家的空白

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成方法
    +关注

    关注

    0

    文章

    3

    浏览量

    6106
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136224
  • 数据分析
    +关注

    关注

    2

    文章

    1506

    浏览量

    35932
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    时钟周期、机器周期、指令周期介绍

    就只需要一个时钟周期完成,实际上却需要多个。机器周期是机器完成一个基本操作的时间。 指令周期:执行一条指令所需要的时间,是从取指令、分析指令到执行完指令所需的全部时间,计算机中,常把一条指令的执行
    发表于 11-17 07:54

    机器视觉检测PIN针

    正确。位置精度: 亚像素边缘检测测量各Pin针相对于基准或彼此的实际坐标,对比设计公差。共面: 激光三角测量或聚焦成像技术,非接触式精确测量所有Pin针尖端高度,计算最大高度差(共面)。缺陷识别
    发表于 09-26 15:09

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 2630次阅读

    【「# ROS 2智能机器人开发实践」阅读体验】视觉实现的基础算法的应用

    : 一、机器人视觉:从理论到实践 第7章详细介绍了ROS2在机器视觉领域的应用,涵盖了相机标定、OpenCV集成、视觉巡线、二维码识别以及深度学习目标检测等内容。通过
    发表于 05-03 19:41

    【「# ROS 2智能机器人开发实践」阅读体验】+ROS2应用案例

    这一部分内容,我掌握了如何在ROS 2中实现SLAM,这对于提高机器人的自主导航能力具有重要意义。 其他内容概述 除了二维码识别和SLAM技术,书中还介绍了其他视觉应用和地图构建的内容,如视觉巡线
    发表于 04-27 11:42

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 617次阅读

    人工智能和机器学习以及Edge AI的概念与应用

    与人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能和机器学习是现代科技的核心技术 人工智能(AI)和机器
    的头像 发表于 01-25 17:37 1573次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的概念与应用

    嵌入式机器学习的应用特性与软件开发环境

    设备和智能传感器)上,这些设备通常具有有限的计算能力、存储空间和功耗。本文将您介绍嵌入式机器学习的应用特性,以及常见的机器学习开发软件与开发
    的头像 发表于 01-25 17:05 1209次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多
    的头像 发表于 12-30 09:16 1968次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    【「具身智能机器人系统」阅读体验】1.全书概览与第一章学习

    了解具身智能机器人相关的知识,我感到十分荣幸和幸运。 全书简介 本书以循序渐进的方式展开,通过对具身智能机器人技术的全方位解析,帮助读者系统化地学习这一领域的核心知识。 首先在第一部分,介绍
    发表于 12-27 14:50

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 696次阅读

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    医疗领域,手术辅助机器人需要毫米级的精确控制,书中有介绍基于视觉伺服的实时控制算法,以及如何利用大模型优化手术路径规划。工业场景中,协作机器人面临的主要挑战是快速适应新工艺流程。具身智能通过在线
    发表于 12-24 15:03

    zeta在机器学习中的应用 zeta的优缺点分析

    在探讨ZETA在机器学习中的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在机器
    的头像 发表于 12-20 09:11 1624次阅读

    傅立叶变换在机器学习中的应用 常见傅立叶变换的误区解析

    傅里叶变换在机器学习中的应用 傅里叶变换是一种将信号分解为其组成频率分量的数学运算,它在机器学习中的应用日益广泛。以下是一些主要的应用领域: 信号处理 : 音频处理:傅里叶变换有助于识
    的头像 发表于 12-06 17:06 1478次阅读