0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用PIC12F1501来创建数字控制升压电源

贸泽电子设计圈 来源:互联网 作者:佚名 2017-10-31 10:59 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

可使用同一款单片机实现纯模拟控制的同步降压型电源和升压型电源。从而实现输出稳压。两种方案拥有一个共同的优点,即不占用任何处理器资源,这样内核就可以全力满足更为复杂的固件的需求。同时,模拟回路能够更快速地响应负载阶跃和输入电压变化,这对于不少应用而言是非常有用的。

本文讨论的单片机为 Microchip 旗下的 PIC16F753。无论是降压还是升压转换器其所需的外设集是相同的:互补输出发生器、比较器运算放大器、9 位模数转换器、固定参考电压、斜率补偿模块,以及捕捉和比较 PWM 模块。上述外设应通过固件实现内部连接,以减少所需的外部引脚数。

电路图

降压转换器的输入电压范围为 8 至 16V DC,输出端为 5V DC、2A 和 10W。代码大小105 个字,RAM 容量 0 字节,可用代码大小 1943 字,可用 RAM 容量 128 字节。2A条件下测定的效率为 94%。

图1:降压电源框图

图1所示的是一个同步降压电源框图。此处输出电压使用峰值电流模式控制进行稳压,并使用误差运算放大器(OPA)来与参考电压进行比较。然后将结果输入到峰值电流比较器中。内部斜率补偿模块会从误差放大器输出值中先减去一个软件可编程斜率,再输入到峰值电流比较器。CCP捕捉和比较PWM模块提供一个具有固定频率和固定占空比的控制信号,而峰值电流比较器输出会被选为互补输出生成器(COG)下降沿的另一个(分级)源。

升压转换器有着相同的工作原理,图2所示即其原理框图。不过在参数规格上略有不同。具体来说,升压转换器的输入电压范围为3至5V DC,而输出端和RAM容量与降压转换器相同。代码大小99字,可用代码大小1949字。2A条件下测定的效率为87%。

图2:升压转换器框图

工作原理

配置完外设并将它们连接在一起后,控制环路会自动运行,无需占用处理器时间。占空比超过50%时,峰值电流控制方案需要斜率补偿以 防止振荡。占空比较低时,如果电流检测电阻较小,斜 率补偿还有助于稳定控制环路。PIC16F753具有一个内部斜率补偿模块,将误差放大器输出馈送至峰值电流 比较器之前,可利用此模块从该输出中减去一个可编程 的斜坡。

对于同步开关电源晶体管控制信号需要一个较小的死区来避免产生直通电流。COG可根据振荡器频率或模 拟延时链生成此信号。利用模拟延时链,用户可设置一个分辨率为5 ns的死区,该死区非常适合小晶体管。 针对此特定应用,将死区设置为30 ns。

对于降压拓扑,电感电流等于负载电流。为了能够使用下桥臂电流检测电阻来测量峰值电感电流,需要进行一些修改。通常情况下,电流检测电阻得到的是峰值 电流控制方案无法使用的滤波输出电流。通过电流检测 电阻将输出电容接地后,ESR会增大,但生成的波形与电感电流波形非常相近。这种方法的缺点在于效率略 低,但上桥臂电流检测电阻通常需要附加电路(电流镜 或专用IC),而这会增加成本。

而在升压拓扑结构中,电感电流等于输入电流。电感峰值电流由放置在晶体管源极和地之间的电阻直接测量。

输入和输出

控制环路中没有集成输出电流限制功能,因此应使用第二个比较器并将其选作COG的自动关断源。误差放大器输出即为电感峰值电流限值,因此通过电阻分压器使该值保持为较低值有助于避免浪涌电流问题和灾难性 的短路状态。但是,这种方法的缺点在于系统增益的降低以及对瞬态的响应变慢。OPA输出引脚与斜率补偿 模块输入引脚相同,因此这两个外设可以一起使用,无需任何其他外部连接。如果使用电阻分压器限制OPA输出电压,则必须将其从外部连接到FVR缓冲器输入引脚。

升压转换器的输入电压应通过小型二极管连接至单片机,并自举到输出端。这样,当输出电压上升时,它就会为单片机和MOSFET驱动器供电。这实现了效率的提升,因为更高的VGS将会改善RDS(ON),而低于4.5V的间隔对大多数功率晶体管而言都是一个问题。同时,这使得FVR成为唯一现有的稳定参考电压,而电路也需要做出一些改变以确保回路的参考电压永远不受电源或输出电压影响。由于控制回路的参考电压来自于DAC,因而这一外设也需要一个稳定的基准。1.2V的FVR被选作DAC参考电压,可满足上述所有要求。

从电源经过电感和整流二极管再到输出端,升压拓扑结构有一个明确的DC电流流通路径,即使是在开关晶体管阻断的情况下。限流回路只在开关频率变为零之前能起到防止过流的作用。而这之后如果没有额外的保护开关,就可能会出现灾难性的短路事件。因此,我们可以在输出端下桥臂放置一个额外的晶体管以便在短路发生时切断负荷。

就基于比较器的短路保护应用而言,必须在整个工作电压范围内都确保有稳定的参考电压。由于输出电流分流电压通常都太小而无法直接与1.2V FVR一起使用,因此我们需要将其经由外部发送,先通过FVR缓冲器,然后通过电阻分压器,以获取比较器所需的基准电压。由于FVR缓冲器采取了这一应用方式,则运算放大器输出必须与斜率补偿模块一起直接使用,而不应使用额外的分压器。这样不仅不占用处理器时间,还应用了更多的引脚和外设。而就基于ADC的短路保护应用而言,电流监测电阻的电压和FVR值在固件中读取。需要读取FVR电压才能计算VDD值(在低于5V的条件下),在这种情况下即为ADC参考电压。虽然这不需要使用额外的比较器、I/O引脚或外部电阻,但是它却需要一些程序空间和处理器时间。

我们必须对转换器针对特定负载进行补偿,同时也必须在所有工作条件下验证其稳定性。

与使用专门的PWM控制芯片相比,性能是相似的,但是PIC单片机的使用提升了灵活性。此外,模拟控制回路可以独立运行,所以单片机内核可完全自由地运行用户的算法、测量各项电源参数或发送相关的信息。

应用

应用模拟控制回路的电源可以足够快地响应动态负载和输入电压的变化。对于诸如LED或热电电池等电流控制的负载而言,电压反馈可由平均电流反馈来替代。该电源还可用于需要对电压和电流进行控制的各种应用,例如CC和CV电池充电器等。PIC16F753 DAC具有9位分辨率,在降压转换器应用中可通过1/2输出分压器转换为20 mV的最小电压歩阶,在升压转换器应用中可通过1/5输出分压器转换为50 mV的最小电压歩阶。

该应用需要一个运算放大器、一个比较器和一个DAC。DAC输出端可由内部连接至运算放大器,因此这就节省了一个引脚。CCP模块会针对COG生成一个具有固定频率、固定占空比的信号。根据限制OPA输出的用户选项,电阻分压器需经由外部连接至FVR缓冲器输入端。如果不使用电阻分压器,那么就不需要使用两个引脚,一个就足够了。在这种情况下,与斜率补偿模块输入引脚为同一引脚的运算放大器输出引脚,即被配置为模拟引脚,并且不应被用于其它用途。我们可以将仅用作输入功能的数字引脚当作一个按键来使用或者用于其它类似用途。在运行期间,编程数据I/O引脚和其它两个引脚处于空闲状态,可用于用户特定的用途。

升压转换器替代设计

我们还可以使用PIC12F1501来创建数字控制升压电源。它在轻负载、硬件过压保护方面效率较高,并且只需使用少量的元件即可。所需的外设包括两个10位ADC通道、一个FVR、比较器、数控振荡器和互补波形发生器。上述外设通过固件进行内部连接,从而将所需的外部引脚数降低到了三个。该应用的框图如图3所示。

图3:数字控制升压电源框图

我们应用比例控制回路来调节输出电压和电流。使用两个ADC通道来读取输出值,并对控制信号作相应的调整。数控振荡器使用频率可变的固定导通时间脉冲来进行占空比脉冲频率调制。

结论

本文展示了如何使用Microchip单片机在创建降压和升压转换器的同时节省一部分处理能力以便执行其它任务。文中的三个应用实例均只需要很小的一套外设即可实现各自的目标。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 转换器
    +关注

    关注

    27

    文章

    9365

    浏览量

    155064
  • 电源管理
    +关注

    关注

    117

    文章

    6548

    浏览量

    147517
  • PIC12F1501
    +关注

    关注

    0

    文章

    2

    浏览量

    2184

原文标题:转换器实现输出稳压?据说一半的人都不知道!

文章出处:【微信号:Mouser-Community,微信公众号:贸泽电子设计圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    PIC18F24/25Q24微控制器技术解析与应用指南

    Microchip Technology PIC18F24/25Q24微控制器是PIC18-Q24微控制器系列28/40/44/48引脚器件的一部分,用于传感器接口、实时
    的头像 发表于 10-10 09:56 376次阅读
    <b class='flag-5'>PIC18F</b>24/25Q24微<b class='flag-5'>控制</b>器技术解析与应用指南

    PIC16F13145 Curiosity Nano评估套件技术解析

    Microchip Connect PIC16F13145 Curiosity Nano评估套件设计用作评估PIC16F13145系列微控制器的硬件平台。Microchip Technology
    的头像 发表于 10-09 11:07 326次阅读
    <b class='flag-5'>PIC16F</b>13145 Curiosity Nano评估套件技术解析

    用于 3G/4G/LTE PA 包络跟踪的超快速升压电源 skyworksinc

    电子发烧友网为你提供()用于 3G/4G/LTE PA 包络跟踪的超快速升压电源相关产品参数、数据手册,更有用于 3G/4G/LTE PA 包络跟踪的超快速升压电源的引脚图、接线图、封装手册、中文
    发表于 07-23 18:32
    用于 3G/4G/LTE PA 包络跟踪的超快速<b class='flag-5'>升压电源</b> skyworksinc

    电压环路:电池 → 升压电路 → 降压电路 → 电池

    因产品需要,设计电路产生了疑难问题。例如:一12v电池接DC-DC升压电路,电压升至18v。输出又接一DC-DC降压电路,降至12v,输出又接至电池。由于电压不可能精准等于理想值,降压
    发表于 06-13 09:16

    升压电路一文搞懂 升压电路技术文档合集

    升压电路图集合,升压电路设计方案,电路设计技巧,升压电路一文搞懂;给大家分享 升压电路技术文档合集
    的头像 发表于 05-15 15:58 1.7w次阅读
    <b class='flag-5'>升压电</b>路一文搞懂 <b class='flag-5'>升压电</b>路技术文档合集

    LT5554宽带、超低失真、7 位数字控制型VGA技术手册

    通过 2 个数字控制位 (PG5、PG6) 实现。 3.875dB 增益控制范围内的 0.125dB 跨导放大器细调步幅通过 5 个数字控制位 (PG0 至 PG4)
    的头像 发表于 04-21 13:56 873次阅读
    LT5554宽带、超低失真、7 位<b class='flag-5'>数字控制</b>型VGA技术手册

    AD8369 600MHz 、45dB数字控制式可变增益放大器技术手册

    AD8369是一款高性能数字控制型可变增益放大器,设计用于手机接收机的中频设备。 该器件具有4位数字控制增益接口,可配置为并行或3线串行控制。增益控制在45 dB的范围内可调,以
    的头像 发表于 03-18 14:42 818次阅读
    AD8369 600MHz 、45dB<b class='flag-5'>数字控制</b>式可变增益放大器技术手册

    升压电源负载短路时的过电流引发的问题

    首先,我们来了解一下“升压电源负载短路时的过电流引发的问题”。关于升压电源的输出短路引发的问题,作为示例我们在这里探讨“二极管整流方式的输出短路”、“同步整流方式的输出短路”、“背栅控制”、“低边开关的限流工作”。
    的头像 发表于 02-19 14:26 1314次阅读
    <b class='flag-5'>升压电源</b>负载短路时的过电流引发的问题

    降压和升压电路同时工作,电源输入端的电容该如何配置才不会影响MC33063A的正常工作?

    升压。 遇到的问题是: 根据TI公司MC33063A的推荐电路,单独使用降压或升压电路时,电源的输入端各有1个100uF的电解电容,现在降压和升压电路同时工作,
    发表于 02-13 06:44

    PIC12F629/675 数据手册免费下载

    PIC12F629中文芯片资料,包含所有内部资源资料及寄存器地址。
    发表于 01-22 17:23 41次下载

    AN4121-采用PIC16F单片机进行系统电源控制

    电子发烧友网站提供《AN4121-采用PIC16F单片机进行系统电源控制.pdf》资料免费下载
    发表于 01-21 14:42 0次下载
    AN4121-采用<b class='flag-5'>PIC16F</b>单片机进行系统<b class='flag-5'>电源</b><b class='flag-5'>控制</b>

    tlv5618的地引脚接模拟地时,三根数字控制线怎么接到tlv5618?

    请问tlv5618的地引脚接模拟地时,三根数字控制线接到tlv5618时是不是要拿隔离芯片去将数字控制信号转换到模拟信号平面上再去控制,或者是三根控制线可以直接接到芯片上?电路板
    发表于 12-30 08:14

    DCDC低电压2V输入升压12V、18、24V/2A升压压电源供电IC SLB628

    电压配置,成为了低电压输入升压应用的理想选择。 产品概述SLB628是一款专为低电压输入设计的升压电源模块,能够轻松将2V的输入电压升压12V、24V或28V,并稳定输出2A的电流
    发表于 12-18 17:16

    PFC模拟和数字控制的比较 PFC对电网稳定性的贡献

    PFC模拟和数字控制的比较 功率因数校正(PFC)技术是提高用电设备功率因数的关键手段,而模拟控制数字控制则是实现PFC的两种主要方法。以下是对这两种控制方法的比较: 模拟
    的头像 发表于 12-16 15:55 1463次阅读

    UCD3138A64数字控制器用户手册

    电子发烧友网站提供《UCD3138A64数字控制器用户手册.pdf》资料免费下载
    发表于 12-09 15:57 0次下载
    UCD3138A64<b class='flag-5'>数字控制</b>器用户手册