0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

埃米级芯片:拓展摩尔定律 打破性能瓶颈

新思科技 来源:新思科技 2023-12-13 17:38 次阅读

埃米是一种非常小的度量单位,相当于一米的百亿分之一。它通常用于表示原子和分子的尺寸。在半导体行业中,埃米也用于表示IC器件的尺寸。2021年,英特尔率先制定了一个具有开创性的埃米级制程路线图,并计划于2024年投入生产(点击阅读原文查看)。此外,独立纳米和数字技术研究中心IMEC也提出了一个芯片微缩路线图,预测到2036年,半导体行业将能够发展到2埃米级别。

要实现埃米级芯片设计,需要整个半导体生态系统的协作和创新。从光刻领域的创新,到新型晶体管结构的创新(如GAA和CFET),再到Multi-Die系统的发展,这些领域的创新技术将引领下一代埃米级芯片设计。

在埃米时代,纳米已经不再小了。埃米时代的世界是什么样的?电子行业又如何才能充分发挥埃米制程的潜力?

埃米级芯片,拓展摩尔定律,打破性能瓶颈

摩尔定律指出,每一代的晶体管密度都能达到上一代的两倍,在纳米制程时代,摩尔定律正在趋近极限。在埃米级时代,芯片上集成的晶体管数量将多达数十亿个,器件将能够以更低的功耗提供更高的性能。芯片制程进入埃米级有望扩展摩尔定律的优势,为打破芯片性能瓶颈提供新的可能。

埃米级的设计为自然语言处理、基因组测序、工业4.0制造和科学计算等应用奠定了新的计算可能性基础。未来,以下场景都可能会实现:

生产线配备更紧凑的机器人设备,这些设备经过训练后,能够比当今的工厂自动化设备更快、更精确地完成任务

通过更快、更准确的建模能力,预测气候变化的影响、加速新疫苗研发、提供对财务投资组合和风险管理的更深层次的见解

为汽车等行业提供更高效的研发和产品设计流程

埃米级设计,消除阻碍SoC性能的瓶颈

芯片的各个层面都存在着瓶颈。以神经网络处理为例,神经网络用于深度学习算法,它可以识别原始数据中的模式和相关性,进行聚类、分类,并从中学习以实现持续改进。这些算法依赖于大量并行处理器的协同工作。一块芯片上可以放置的处理器越多,芯片运行这些海量工作负载的速度就越快。然而,为了实现支持此类应用的SoC所需的PPA,芯片开发者必须克服以下多个瓶颈:

晶体管层面,在将晶体管连接在一起的互连组件周围存在着一系列瓶颈。

处理器层面,开发者需要在以下各个方面做出权衡。比如处理器的复杂性和数量、连接它们所需的互连组件数量,以及在处理单元与系统内存之间快速移动数据的需要。

内存层面,由于片上内存的微缩速度不及标准单元迅速,二者之间会存在一定的差距。因此,随着逻辑器件变得越来越小,如果内存尺寸无法相应地缩小,能够提取的内容就会受到限制。

更大的处理器似乎更易于编程且能够执行更多任务,但开发更大的处理器虽然看起来更容易,其实会增加高效设计和制造的复杂性,还可能导致并行任务的数量减少、简单任务的功耗增加。所以采用埃米级设计才是解决之道。

埃米级制程的设计基于大量的研发实践,涵盖了整个设计链中的诸多技术,包括核心制程定义、芯片设计构建块,以及支持芯片设计的一套设计自动化工具和流程。其构成要素包括:

用于增强传统光刻微缩的新晶体管结构

用于构建数字孪生候选晶体管结构的技术,以及用于评估和选择最有前景的结构的制程定义

作为芯片设计构建块的新逻辑库和内存架构

电子设计自动化(EDA)工具中的新算法,使开发者能够实现和验证使用这些构建块设计的芯片(晶体管数量呈指数级增长)

利用先进的光刻工具,晶圆厂能够刻印更小的结构。目前正在研发的高数值孔径(High-NA)极紫外(EUV)都是预计将于2025年交付给晶圆厂的先进光刻工具。此外,GAA晶体管结构允许将多个通道堆叠在一起,从而增加芯片密度。

将埃米级架构中的供电从晶体管上方移至晶体管下方,这一工艺被称为背面供电(BSPDN)。背面供电可以充分发挥GAA结构的高密度潜力。通过将供电置于背面,开发者能够缩小逻辑单元的高度,因为在背面供电中,逻辑单元已不再需要顶部和底部的宽导线(称为电源轨)来传输电力。此外,这还节省了单元上方布线层上的大量布线资源,使得芯片的正面可用于信号路由,并防止互连引发的瓶颈。

不仅如此,GAA还可以实现FinFET结构无法实现的内存扩展,同时减少漏电流并增加驱动电流,以进一步提升芯片整体性能。CFET是GAA更为复杂的版本,它由垂直堆叠的晶体管组成,具有显著的面积和性能优势,尤其是对于存储器而言。由于CFET针对的是2.5纳米及更小制程的设计,因此有望在埃米时代发挥不可或缺的作用。

另一项与埃米级裸片相媲美的创新是Multi-Die系统,它由多个裸片(通常称为小芯片)组成,裸片之间相互堆叠和/或与中介层连接,最终集成在单个封装中。这种相互依赖的架构可通过分解的方式来构建,也就是将大的裸片划分为较小的裸片以提高系统良率并降低成本,或是将使用不同工艺技术的裸片组装到一起以提供出色的系统功能和性能。与大尺寸单片SoC相比,Multi-Die系统能够加速系统功能的扩展,并具有降低风险、缩短产品上市时间、降低系统功耗以及快速开发新产品版本等优势。

埃米级裸片可以在Multi-Die系统中发挥重要作用,支持带宽密集型应用所需的处理能力,而基于旧制程节点的裸片可用于满足负担较小的芯片功能。

半导体行业的新发展之路

随着芯片上封装的元件数量变得十分庞大,设计和验证过程变得愈发复杂,加之埃米级晶体管数量高达数十亿个之多,在驱动EDA流程的算法中集成人工智能AI)和机器学习(ML)的作用就凸显出来。人工智能和机器学习能够以比传统EDA解决方案快几个数量级的速度,寻找重复性大型任务中的模式或效率优化空间,并发现极其微小的错误,例如十亿分之一的相关错误。

此外,机器学习还使得位于实现周期前端的应用(例如综合)能够尽早了解流程后期可能发生的情况,以便开发者做出预测性决策,从而引导流程通向最佳解决方案。人工智能和机器学习的应用不仅有助于提高开发效率和设计质量,还能缩短埃米级裸片的周转时间。

除了使用AI驱动的设计和验证流程外,经验证的IP也能够降低集成风险,同时缩短先进半导体器件的上市时间。芯片生命周期管理(具有片上监控功能)等解决方案有助于跟踪芯片在整个生命周期中的健康状况和性能,触发调制电源电压等方法以延长芯片的使用寿命,并在芯片失效之前请求予以更换。

实现更优化的PPA一直是开发者们努力的方向,埃米级微缩是其中具有代表性的创新之一。通过这一技术,未来的芯片可能会以超乎想象的方式影响这个世界。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 处理器
    +关注

    关注

    68

    文章

    18304

    浏览量

    222383
  • 半导体
    +关注

    关注

    328

    文章

    24548

    浏览量

    203393
  • 机器人
    +关注

    关注

    206

    文章

    27064

    浏览量

    201494
  • 摩尔定律
    +关注

    关注

    4

    文章

    622

    浏览量

    78541
  • 晶体管
    +关注

    关注

    77

    文章

    9059

    浏览量

    135307

原文标题:让摩尔定律走出极限的,会是埃米级芯片吗?

文章出处:【微信号:Synopsys_CN,微信公众号:新思科技】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    功能密度定律是否能替代摩尔定律摩尔定律和功能密度定律比较

    众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?
    的头像 发表于 02-21 09:46 222次阅读
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩尔定律</b>?<b class='flag-5'>摩尔定律</b>和功能密度<b class='flag-5'>定律</b>比较

    摩尔定律的终结:芯片产业的下一个胜者法则是什么?

    在动态的半导体技术领域,围绕摩尔定律的持续讨论经历了显着的演变,其中最突出的是 MonolithIC 3D 首席执行官Zvi Or-Bach于2014 年的主张。
    的头像 发表于 01-25 14:45 552次阅读
    <b class='flag-5'>摩尔定律</b>的终结:<b class='flag-5'>芯片</b>产业的下一个胜者法则是什么?

    中国团队公开“Big Chip”架构能终结摩尔定律

    摩尔定律的终结——真正的摩尔定律,即晶体管随着工艺的每次缩小而变得更便宜、更快——正在让芯片制造商疯狂。
    的头像 发表于 01-09 10:16 362次阅读
    中国团队公开“Big Chip”架构能终结<b class='flag-5'>摩尔定律</b>?

    英特尔CEO基辛格:摩尔定律仍具生命力,且仍在推动创新

    摩尔定律概念最早由英特尔联合创始人戈登·摩尔在1970年提出,明确指出芯片晶体管数量每两年翻一番。得益于新节点密度提升及大规模生产芯片的能力。
    的头像 发表于 12-25 14:54 267次阅读

    摩尔定律时代,Chiplet落地进展和重点企业布局

    电子发烧友网报道(文/吴子鹏)几年前,全球半导体产业的重心还是如何延续摩尔定律,在材料和设备端进行了大量的创新。然而,受限于工艺、制程和材料的瓶颈,当前摩尔定律发展出现疲态,产业的重点开始逐步转移到
    的头像 发表于 12-21 00:30 1033次阅读

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法
    的头像 发表于 12-05 15:32 332次阅读
    应对传统<b class='flag-5'>摩尔定律</b>微缩挑战需要<b class='flag-5'>芯片</b>布线和集成的新方法

    摩尔定律不会死去!这项技术将成为摩尔定律的拐点

    因此,可以看出,为了延续摩尔定律,专家绞尽脑汁想尽各种办法,包括改变半导体材料、改变整体结构、引入新的工艺。但不可否认的是,摩尔定律在近几年逐渐放缓。10nm、7nm、5nm……芯片制程节点越来越先进,
    的头像 发表于 11-03 16:09 300次阅读
    <b class='flag-5'>摩尔定律</b>不会死去!这项技术将成为<b class='flag-5'>摩尔定律</b>的拐点

    超越摩尔定律,下一代芯片如何创新?

    摩尔定律是指集成电路上可容纳的晶体管数目,约每隔18-24个月便会增加一倍,而成本却减半。这个定律描述了信息产业的发展速度和方向,但是随着芯片的制造工艺接近物理极限,摩尔定律也面临着
    的头像 发表于 11-03 08:28 491次阅读
    超越<b class='flag-5'>摩尔定律</b>,下一代<b class='flag-5'>芯片</b>如何创新?

    摩尔定律的终结真的要来了吗

    仍然正确的预测,也就是大家所熟知的“摩尔定律”,但同时也提醒人们,这一定律的延续正日益困难,且成本不断攀升。
    的头像 发表于 10-19 10:49 357次阅读
    <b class='flag-5'>摩尔定律</b>的终结真的要来了吗

    半导体行业产生深远影响的定律摩尔定律

    有人猜测芯片密度可能会超过摩尔定律的预测。佐治亚理工学院的微系统封装研究指出,2004年每平方厘米约有50个组件,到2020年,组件密度将攀升至每平方厘米约100万个组件。
    的头像 发表于 10-08 15:54 702次阅读

    摩尔定律为什么会消亡?摩尔定律是如何消亡的?

    虽然摩尔定律的消亡是一个日益严重的问题,但每年都会有关键参与者的创新。
    的头像 发表于 08-14 11:03 1369次阅读
    <b class='flag-5'>摩尔定律</b>为什么会消亡?<b class='flag-5'>摩尔定律</b>是如何消亡的?

    什么是摩尔定律?

    摩尔定律是近半个世纪以来,指导半导体行业发展的基石。它不仅是技术进步的预言,更是科技领域中持续创新的见证。要完全理解摩尔定律的影响和意义,首先必须了解它的起源、内容及其对整个信息技术产业的深远影响。
    的头像 发表于 08-05 09:36 3593次阅读
    什么是<b class='flag-5'>摩尔定律</b>?

    【芯闻时译】扩展摩尔定律

    层半导体,如钼基和钨基TMD,是扩展摩尔定律并确保MOSFET晶体管最终成为有希望的候选材料,因为2D-FET提供固有的亚1nm晶体管沟道厚度。它们适用于高性能和低功耗平台,因为它们具有良好的载流子运输和移动性,即使是原子薄层也是如此。此外,它们的器件主体厚度和适中的能
    的头像 发表于 07-18 17:25 291次阅读

    摩尔定律时代新赛道—硅光子芯片技术

    纵观芯片发展的历史,总是离不开一个人们耳熟能详的概念 ——“摩尔定律”。
    的头像 发表于 06-15 10:23 850次阅读
    后<b class='flag-5'>摩尔定律</b>时代新赛道—硅光子<b class='flag-5'>芯片</b>技术

    摩尔定律已过时?谁还能撑起芯片的天下?

    熟悉半导体行业的人想必对摩尔定律很熟悉,摩尔定律自问世以来就是半导体行业的最高目标,正是基于该目标,电子设备变得更加快速、高效且便宜,然而随着集成电路的尺寸越来越小,摩尔定律逐渐难以实现,因此很多人
    的头像 发表于 05-18 11:04 402次阅读