Buck型数字变换器系统结构

来源:网络整理 作者:2018年01月10日 18:07
关键词:变换器BUCK

1、数字控制Buck型变换器系统结构

数字控制Buck型变换器的系统框图如图1所示。反馈控制回路中包含AD采样器、误差生成器、PID控制器以及PWM波形产生器等模块,所有模块均以数字处理芯片作为载体,通过编程方式实现。

Buck型数字变换器系统结构

图1  数字控制Buck型变换器系统框图

2、数字PID控制器设计

数字系统是离散系统,但如果采样周期足够小,则数字系统可近似于连续系统。采用频域补偿设计方法实现模拟PID控制器的参数整定,通过连续系统离散化处理,可最终实现数字PID控制器的参数设计。

2.1、模拟PID控制器的参数整定

连续导电模式(CCM)下,Buck型变换器控制对象的传递函数为:

Buck型数字变换器系统结构

直流增益:

ADC=nUi/Um,UM为PWM产生器的锯齿波峰峰值;极点角频率:

Buck型数字变换器系统结构

品质因数:Q=R√C/R。

Buck型变换器的典型频率特性曲线如图2所示。

由频率特性曲线可知:

(1)幅频特性的低频段曲线平坦,欲消除闭环系统的稳态误差,补偿网络的设计应至少含有一个积分环节;(2)主极点wp由LC输出滤波器产生,表现为一个双重极点,产生180°的滞后相移,系统相位裕量偏低。

Buck型数字变换器系统结构

图2  连续导电模式(CCM)下Buck型变换器频率特性曲线

模拟PID控制器的传递函数为:

Buck型数字变换器系统结构

式中:Kp=K(wz1+wz2)/(wz1wz2);Ki=K;Kd=K/(wz1wz2)。

模拟PID控制器的典型频率特性曲线如图3所示。补偿网络可提供一个原点处极点用以消除系统的静态误差,同时提供两个零点可补偿主极点造成的180°滞后相移,有效提高系统的相位裕量。

在分析了Buck型变换器及模拟PID控制器典型频率特性的基础上,采用频域补偿设计法配置补偿网络零极点,实现模拟PID控制器的参数整定。

模拟PID控制器零极点配置原则如下:

(1)选择补偿后系统开环传递函数的穿越角频率:

穿越角频率wc一般取1/10~1/5的开关角频率ws处,以在保证系统稳定性的前提下,使输出响应具有良好的动态特性;(2)确定补偿网络两零点角频率:补偿网络的两零点角频率wz1、wz2设计为控制对象主极点角频率wp的1/2左右,以补偿主极点产生的180°滞后相移,提高系统的相位裕量;(3)计算补偿网络的增益值:在穿越角频率wc处补偿后系统开环传递的增益为零,即|Gvdm(s)|s=jwc=1/|Gc(s)|s=jwc,据此计算补偿网络增益值K。

按照以上步骤即可完成模拟PID控制器参数(Kp、Ki、Kd)的整定。

Buck型数字变换器系统结构

图3  模拟PID控制器典型频率特性曲线

12下一页全文

本文导航

关注电子发烧友微信

有趣有料的资讯及技术干货

下载发烧友APP

打造属于您的人脉电子圈

关注发烧友课堂

锁定最新课程活动及技术直播
声明:电子发烧友网转载作品均尽可能注明出处,该作品所有人的一切权利均不因本站而转移。
作者如不同意转载,既请通知本站予以删除或改正。转载的作品可能在标题或内容上或许有所改动。
收藏 人收藏
分享:

相关阅读

发表评论

elecfans网友

分享到:

用户评论(0