0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

剖析稳定锂金属电池的长效固体电解质界面

锂电联盟会长 来源:能源学人 作者:Seon Hwa Lee 2021-06-04 15:25 次阅读

由锂金属阳极、酯基电解质、富镍Li[NixCoyMn1-x-y]O2(NCM)阴极组成的锂电池已成为下一代储能技术的潜在候选者。然而,寻找一种能高度兼容NCM阴极,同时在锂金属阳极表面形成稳定固体电解质界面(SEI)层的固体电解质是一个重大的挑战。

本文介绍了一种新的电解质添加剂—饱和的P2S5-CS2(PSC)溶液(1wt.%),以修饰酯基电解质,可形成离子导电SEI来稳定锂金属。研究发现,P2S5可以通过CS2溶解,该溶液可以促进原位形成含有无机Li−P−S化合物(锂离子导体,可能是Li3PS4)的稳定SEI,使无枝晶和高度可逆的锂金属阳极成为可能。

由锂金属阳极、PSC修饰电解质和Li[Ni0.73Co0.10Mn0.15Al0.02]O2阴极组成的电池,具有高容量,高循环稳定性,在超过1500次循环后仍具有高库仑效率。

【研究背景】

锂金属阳极(LMBs)作为一种极具发展前景的替代电池技术,受到了科学界和工业界的广泛关注。锂金属阳极的理论容量是传统石墨阳极的10倍(石墨,372mAhg-1,Li,3862mAhg-1),而且它的电化学氧化还原的电位较低(相比标准氢电极,−3.040V);

这些特性表明锂金属阳极有助于实现具有高能量密度的电池。锂金属阳极和高压Li[NixCoyMn1-x-y]O2(NCM)阴极(Li|NCM电池)作为有前途的高能电池技术,重新引起了研究人员的兴趣。

然而,在实践中,上述Li|NCM电池的优点被金属Li固有的高反应活性引起的电极−电解质界面极度不稳定所掩盖。一般来说,在充电过程中,Li的沉积是不均匀的Li|NCM电池引起了Li枝晶的生长,并导致了固体电解质界面(SEI)的开裂。由于SEI层的重新配置,这加速了锂离子与电解质的消耗,导致循环不良和库伦效率低。

Li|NCM电池的另一个关键缺点是选择合适的电解质溶剂很有限。因为酯基电解质与高压NCM的阴极具良好的兼容性,其在商用锂离子电池和Li|NCM电池中的应用比醚基和液体电解质更广泛。然而,由于其热力学不稳定,酯基电解质通常对锂金属阳极表面具有高反应活性,酯基电解质产生SEI是不稳定的。

因此,合理设计酯基电解质,在锂金属上形成稳定的SEI 层是目前Li|NCM电池技术面临的重要挑战。

在这项研究中,一个新的饱和P2S5-CS2(PSC)溶液(1wt %)作为添加剂来修饰酯基电解质,电解质中包括0.8 M LiTFSI,0.2 M LiDFOB和0.05 M LiPF6 溶于体积比为3:1的EMC和FEC混合溶剂中。

本研究最大的新颖之处在于在酯基电解质中引入P2S5和CS2的组合硫化物作为添加剂,以提高其在LMBs中的实用型,尤其是通过CS2溶解P2S5的新方法(方案1a,1b)克服了P2S5在酯基溶剂中溶解度低的问题。同时,使用修饰的电解质可以有效的缓解Li枝晶(方案1c,1d)。

【内容详情】

首先,使用未修饰和PSC修饰的电解质组装了 Li|NCMA73电池,以分析PSC添加剂对锂金属阳极上形成SEI的影响。SEI在第一个周期后积累在锂金属阳极表面。结果表明,修饰电解质中的添加剂在抑制锂枝晶的形成和限制循环过程中对电解质的消耗方面起着重要作用。为了证实PSC修饰电解质对循环过程中沉积的 Li形貌的影响,组装了使用未修饰和PSC修饰电解质的 Li|Li对称电池进行测试。

在未修饰的电解质中沉积的Li呈纤维和多孔状,尺寸分布不均匀。这种锂金属阳极表面的枝晶结构的表面积较大,加速了电解质的消耗,并在循环过程中产生很大一部分的“死锂”。相比之下,在修饰过的电解质中,锂金属阳极上沉积的形貌更致密。

在横截面SEM图像中,两者之间的锂金属阳极的表面形貌差异更明显。在放电后,未修饰电解液中的锂金属阳极表面皱褶严重,有残余的锂枝晶结构,而在修饰过的电解液中阳极表面在循环过后是光滑的。

为了探讨PSG添加剂对Li|Li对称电池电化学循环稳定性的影响,进行了恒电流循环测试。结果显示P-S键合的诱导化合物可以稳定SEI层,从而抑制“死锂”的形成。图3对比了Li|NCMA73电池在不同电解液下的循环性能。首先,未修饰和修饰过的电解质,在第一次循环中表现出相同的电压曲线和可逆容量。这意味着PSC添加剂没有电化学反应活性,不会对循环性能产生不利影响。

未修饰电解液电池的容量在250次循环后急剧下降且不稳定。相比之下,电解液PSC修饰过的电池,在循环1500次后能有较好的容量(60%)。在更高的充电倍率下,PSC添加剂的效果更加明显,修饰后的电池寿命比未修饰的电池长10倍。

【结论】

一种全新的饱和P2S5 CS2 (PSC)被用来修饰酯基电解质,以提高锂金属阳极的稳定性。无机P2S5盐可以溶解在由CS2中,从而克服它的低溶解度问题,这在之前没有报道过。一个含有Li−P−S化合物的稳定SEI可以形成在锂金属阳极表面,实现了无枝晶和高度可逆的锂金属阳极。

PSC修饰电解质可以大大提高锂脱嵌的可逆性,并和高压NCMA73阴极有良好的兼容性,即使在实际条件下,也展现了长效的循环稳定性。本文所提出的策略可以为开发高能量和高功率密度的实用锂金属电池电解质提供新的途径。

Seon Hwa Lee, Jang-Yeon Hwang, Jun Ming, Hun Kim, Hun-Gi Jung, and Yang-Kook Sun*, Long-Lasting Solid Electrolyte Interphase for Stable Li-Metal Batteries, ACS Energy Letters2021, DOI:10.1021/acsenergylett.1c00661

https://pubs.acs.org/doi/10.1021/acsenergylett.1c00661

本文转自能源学人

第一作者:Seon Hwa Lee

通讯作者:Yang-Kook Sun

通讯单位:Department of Energy Engineering, Hanyang University

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SEM
    SEM
    +关注

    关注

    0

    文章

    185

    浏览量

    14329
  • 电解质
    +关注

    关注

    6

    文章

    745

    浏览量

    19679
  • 阳极
    +关注

    关注

    1

    文章

    22

    浏览量

    8082
  • PSC
    PSC
    +关注

    关注

    0

    文章

    14

    浏览量

    7696
  • 锂金属电池
    +关注

    关注

    0

    文章

    126

    浏览量

    4189

原文标题:稳定锂金属电池的长效固体电解质界面

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    不同类型的电池电解质都是什么?

    电解质通过促进离子在充电时从阴极到阳极的移动以及在放电时反向的移动,充当使电池导电的催化剂。离子是失去或获得电子的带电原子,电池电解质由液体,胶凝和干燥形式的可溶性盐,酸或其他碱组成
    的头像 发表于 02-27 17:42 341次阅读

    新型固体电解质材料可提高电池安全性和能量容量

    利物浦大学的研究人员公布了一种新型固体电解质材料,这种材料能够以与液体电解质相同的速度传导锂离子,这是一项可能重塑电池技术格局的重大突破。
    的头像 发表于 02-19 16:16 360次阅读

    弱溶剂化少层碳界面实现硬碳负极的高首效和稳定循环

    钠离子电池碳基负极面临着首次库伦效率低和循环稳定性差的问题,目前主流的解决方案是通过调节电解液的溶剂化结构,来调节固体电解质
    的头像 发表于 01-26 09:21 377次阅读
    弱溶剂化少层碳<b class='flag-5'>界面</b>实现硬碳负极的高首效和<b class='flag-5'>稳定</b>循环

    介电填料诱导杂化界面助力高负载锂金属电池

    采用高安全和电化学稳定的聚合物固态电解质取代有机电解液,有望解决液态锂金属电池的产气和热失控等问题。
    的头像 发表于 01-22 09:56 278次阅读
    介电填料诱导杂化<b class='flag-5'>界面</b>助力高负载锂<b class='flag-5'>金属</b><b class='flag-5'>电池</b>

    全固态锂金属电池负极界面设计

    全固态锂金属电池有望应用于电动汽车上。相比于传统液态电解液,固态电解质不易燃,高机械强度等优点。
    的头像 发表于 01-16 10:14 312次阅读
    全固态锂<b class='flag-5'>金属</b><b class='flag-5'>电池</b>负极<b class='flag-5'>界面</b>设计

    人工界面修饰助力高性能锂金属电池的最新研究进展与展望!

    金属负极的能量密度很高,当与高电压正极结合时,锂金属电池可以实现接近 500 Wh kg−1 的能量密度。然而,锂金属负极并不稳定,会与
    的头像 发表于 01-02 09:08 473次阅读
    人工<b class='flag-5'>界面</b>修饰助力高性能锂<b class='flag-5'>金属</b><b class='flag-5'>电池</b>的最新研究进展与展望!

    分子筛电解质膜助力超长寿命锌离子电池

    水系锌离子电池(AZIBs)具有成本低、不易燃烧的锌金属和水电解质等优点。
    的头像 发表于 12-21 09:27 237次阅读
    分子筛<b class='flag-5'>电解质</b>膜助力超长寿命锌离子<b class='flag-5'>电池</b>

    混合导电界面实现长寿命、全固态锂金属电池

    因其优越的安全性和高能量密度,采用硫化物固体电解质的全固态锂金属电池(ASSLMB)越来越受到人们的关注。
    的头像 发表于 11-08 09:17 446次阅读
    混合导电<b class='flag-5'>界面</b>实现长寿命、全固态锂<b class='flag-5'>金属</b><b class='flag-5'>电池</b>

    利用三甲基硅化合物改善硫酸盐固态电解质与阴极材料的界面稳定

    这篇研究文章的背景是关于固态锂电池(ASSBs)中硫化物基固态电解质界面稳定性问题。
    的头像 发表于 11-01 10:41 552次阅读
    利用三甲基硅化合物改善硫酸盐固态<b class='flag-5'>电解质</b>与阴极材料的<b class='flag-5'>界面</b><b class='flag-5'>稳定</b>性

    解锁钠金属电池的超高速率和长寿命

    金属电池是一种具有高能量密度和低成本的电池,在能源存储领域具有广泛的应用前景。构建富含无机物且坚固的固体电解质
    发表于 10-12 16:10 371次阅读
    解锁钠<b class='flag-5'>金属</b><b class='flag-5'>电池</b>的超高速率和长寿命

    用于钠金属电池的NASICON固态电解质的超快合成

    NASICON结构固态电解质(SSEs)作为一种非常有前途的钠固态金属电池(NaSMB)材料,由于其在潮湿环境中具有优异的稳定性、高离子导电性和安全性,因此受到了广泛关注。
    发表于 08-23 09:43 1165次阅读
    用于钠<b class='flag-5'>金属</b><b class='flag-5'>电池</b>的NASICON固态<b class='flag-5'>电解质</b>的超快合成

    高锂金属负极形貌稳定性的聚电解质

    与液态电解质或聚合物电解质不同,聚电解质(polyelectrolytes)是一种大分子,其骨架上含有可电离基团。
    的头像 发表于 08-16 09:32 638次阅读
    高锂<b class='flag-5'>金属</b>负极形貌<b class='flag-5'>稳定</b>性的聚<b class='flag-5'>电解质</b>

    认识石榴石固态电解质的表面再生和反应性

    基于固体电解质(SE)的锂金属电池可以实现高能量存储设备,因为它们与锂金属阳极和高压阴极具有潜在的兼容性。
    的头像 发表于 08-03 09:55 1270次阅读
    认识石榴石固态<b class='flag-5'>电解质</b>的表面再生和反应性

    固态电解质电导性 (Solid系列)

    团体标准《固态锂电池用固态电解质性能要求及测试方法》指出固态电解质性能优劣的最主要性能指标为离子电导率、电子电导率和界面稳定性,其中最核心的
    的头像 发表于 06-25 16:43 548次阅读
    固态<b class='flag-5'>电解质</b>电导性 (Solid系列)

    杂化动态共价网络用作锂金属电池保护层和固态电解质

    电池(LMB)的商业化有两个严重的问题:不可控的锂枝晶生长问题和不稳定的固态电解质界面(SEI)问题。(1)由于循环过程中负极侧不均匀的锂沉积,不可控的锂枝晶生长会导致
    的头像 发表于 05-11 08:47 550次阅读
    杂化动态共价网络用作锂<b class='flag-5'>金属</b><b class='flag-5'>电池</b>保护层和固态<b class='flag-5'>电解质</b>