如何改进MOSFET提升系统效率和功率密度

资料大小: 0.91 MB

所需积分: 1

下载次数:

用户评论: 0条评论,查看

上传日期: 2020-08-07

上 传 者: 发烧友他上传的所有资料

资料介绍

标签:MOSFET(2220)转换器(3444)pcb(10981)

  通过对同步交流对交流(DC-DC)转换器的功耗机制进行详细分析,可以界定必须要改进的关键金属氧化物半导体场效晶体管MOSFET)参数,进而确保持续提升系统效率和功率密度。分析显示,在研发功率MOSFET技术的过程中,以往常见以QG和QGD(即RDS(on)×QG和RDS(on)×QGD)为基础的因子 (FOM)已无法满足需求,若坚持采用固定因子,将可能导致技术选择无法达成优化。通过此次分析的启示,工程师们已定义一套FOM以应用于新的低压功率MOSFET技术研发。由此产生的30伏特(V)技术以超级接面(Superjunction)为基础概念,是DCDC转换器的理想选择;相较于横向和分裂闸极沟槽MOSFET等竞争技术,该技术可同时提供特定的低RDS(on)、QG、 QGD、QOSS和高度闸极回跳抑制。 MOSFET损耗问题加剧 催生新功耗分析技术多相同步降压转换器是微控制器(MCU)以及其他运算密集型集成电路(IC),如数字信号处理器(DSP)和绘图处理器(GPU)供电的拓扑结构选择。在同步降压转换器内,两个功率MOSFET串联形成半桥结构。高处的MOSFET做为控制单结型FET;低处的MOSFET则为同步FET。此电路拓扑演变的关键点在于2000年时,引进PenTIum 4微处理器以及相关的ATX12V电源规范,其中的功率轨(即转换电压) 从5伏特提高至12伏特,以达成微处理器需要快速增加电流的要求。因此而产生的工作周期变化使得功率MOSFET在性能优化方面发生重大变革,并全面采用QGD×RDS(on)和QG×RDS(on)等效益指数作为功率MOSFET的性能指针。然而,过去10年以来,特定尺寸产品中此类FOM和RDS(on)已降低约十倍,QG和QGD已不再是影响功率MOSFET功耗的主要因素。就控制FET而言,MOSFET封装和印刷电路板PCB)联机的寄生电感所产生的功耗可能超过由QGD产生的损耗。降低寄生电感的需求推动Power SO8封装的普及化,并使整合动力的概念于2002年产生,即将控制和同步FET与MOSFET驱动器整合于四方形平面无接脚封装(QFN)中,此概念于2004年获英特尔Intel)DrMOS规范采用。为解决功率MOSFET多面性的损耗问题,一系列日趋复杂的运算方式和效益指数逐被提出。在功耗机制研究领域中,最被看好的技术是利用如TSuprem4和Medici等TCAD工具制作详细的行为模型,并结合详细的电路仿真(如PSpice),进而产生详细的功耗分析结果。虽然此方法可针对不同的功耗机制进行深入分析,但分析结果需转换成一套以MOSFET参数为基础的 FOM,以用于新技术的研发。

用户评论

查看全部 条评论

发表评论请先 , 还没有账号?免费注册

发表评论

用户评论
技术交流、我要发言! 发表评论可获取积分! 请遵守相关规定。
上传电子资料