0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA学习算法系列:彩色转灰度

FPGA学习交流 2018-10-26 10:48 次阅读

大家好,又到了每日学习的时间了,今天我们来聊一聊FPGA学习中可以遇到的一些算法,今天就聊一聊彩色转灰度的算法。

一、基础

对于彩色转灰度,有一个很著名的心理学公式:

Gray = R*0.299 + G*0.587 + B*0.114


二、整数算法

而实际应用时,希望避免低速的浮点运算,所以需要整数算法。

注意到系数都是3位精度的没有,我们可以将它们缩放1000倍来实现整数运算算法:

Gray = (R*299 + G*587 + B*114 + 500) / 1000

RGB一般是8位精度,现在缩放1000倍,所以上面的运算是32位整型的运算。注意后面那个除法是整数除法,所以需要加上500来实现四舍五入。

就是由于该算法需要32位运算,所以该公式的另一个变种很流行:

Gray = (R*30 + G*59 + B*11 + 50) / 100

但是,虽说上一个公式是32位整数运算,但是根据80x86体系的整数乘除指令的特点,是可以用16位整数乘除指令来运算的。而且现在32位早普及了(AMD64都出来了),所以推荐使用上一个公式。


三、整数移位算法

上面的整数算法已经很快了,但是有一点仍制约速度,就是最后的那个除法。移位比除法快多了,所以可以将系数缩放成 2的整数幂。

习惯上使用16位精度,2的16次幂是65536,所以这样计算系数:

0.299 * 65536 = 19595.264 ≈ 19595

0.587 * 65536 + (0.264) = 38469.632 + 0.264 = 38469.896 ≈ 38469

0.114 * 65536 + (0.896) = 7471.104 + 0.896 = 7472

可能很多人看见了,我所使用的舍入方式不是四舍五入。四舍五入会有较大的误差,应该将以前的计算结果的误差一起计算进去,舍入方式是去尾法:

写成表达式是:

Gray = (R*19595 + G*38469 + B*7472) >> 16

2至20位精度的系数:

Gray = (R*1 + G*2 + B*1) >> 2

Gray = (R*2 + G*5 + B*1) >> 3

Gray = (R*4 + G*10 + B*2) >> 4

Gray = (R*9 + G*19 + B*4) >> 5

Gray = (R*19 + G*37 + B*8) >> 6

Gray = (R*38 + G*75 + B*15) >> 7

Gray = (R*76 + G*150 + B*30) >> 8

Gray = (R*153 + G*300 + B*59) >> 9

Gray = (R*306 + G*601 + B*117) >> 10

Gray = (R*612 + G*1202 + B*234) >> 11

Gray = (R*1224 + G*2405 + B*467) >> 12

Gray = (R*2449 + G*4809 + B*934) >> 13

Gray = (R*4898 + G*9618 + B*1868) >> 14

Gray = (R*9797 + G*19235 + B*3736) >> 15

Gray = (R*19595 + G*38469 + B*7472) >> 16

Gray = (R*39190 + G*76939 + B*14943) >> 17

Gray = (R*78381 + G*153878 + B*29885) >> 18

Gray = (R*156762 + G*307757 + B*59769) >> 19

Gray = (R*313524 + G*615514 + B*119538) >> 20

仔细观察上面的表格,这些精度实际上是一样的:3与4、7与8、10与11、13与14、19与20

所以16位运算下最好的计算公式是使用7位精度,比先前那个系数缩放100倍的精度高,而且速度快:

Gray = (R*38 + G*75 + B*15) >> 7

其实最有意思的还是那个2位精度的,完全可以移位优化:

Gray = (R + (WORD)G<<1 + B) >> 2

由于误差很大,所以做图像处理绝不用该公式(最常用的是16位精度)。但对于游戏编程,场景经常变化,用户一般不可能观察到颜色的细微差别,所以最常用的是2位精度。


c#代码

///



/// 彩色图片转换成灰度图片代码

///


///源图片

///

public Bitmap BitmapConvetGray(Bitmap img)

{

int h = img.Height;

int w = img.Width;

int gray = 0; //灰度值

Bitmap bmpOut = new Bitmap(w, h, PixelFormat. Format24bppRgb); //每像素3字节

BitmapData dataIn = img.LockBits(new Rectangle(0, 0, w, h), ImageLockMode.ReadOnly, PixelFormat.Format24bppRgb);

BitmapData dataOut = bmpOut.LockBits(new Rectangle(0, 0, w, h), ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);

unsafe

{

byte* pIn = (byte*)(dataIn.Scan0.ToPointer()); //指向源文件首地址

byte* pOut = (byte*)(dataOut.Scan0.ToPointer()); //指向目标文件首地址

for (int y = 0; y < dataIn.Height; y++)  //列扫描

{

for (int x = 0; x < dataIn.Width; x++)   //行扫描

{

gray = (pIn[0] * 19595 + pIn[1] * 38469 + pIn[2] * 7472) >> 16; //灰度计算公式

pOut[0] = (byte)gray; //R分量

pOut[1] = (byte)gray; //G分量

pOut[2] = (byte)gray; //B分量

pIn += 3; pOut += 3; //指针后移3个分量位置

}

pIn += dataIn.Stride - dataIn.Width * 3;

pOut += dataOut.Stride - dataOut.Width * 3;

}

}

bmpOut.UnlockBits(dataOut);

img.UnlockBits(dataIn);

return bmpOut;

}


补充:

理解Stride:假设有一张图片宽度为6,因为是Format24bppRgb格式(每像素3字节。否则Bitmap默认24位RGB)的,显然,每一行需要6*3=18个字节存储。对于Bitmap就是如此。但对于C# BitmapData,虽然BitmapData.Width还是等于Bitmap.Width,但大概是出于显示性能的考虑,每行的实际的字节数将变成大于等于它的那个离它最近的4的整倍数,此时的实际字节数就是Stride.就此例而言,18不是4的整倍数,而比18大的离18最近的4的倍数是20,所以这个BitmapData.Stride = 20.显然,当宽度本身就是4的倍数时,BitmapData.Stride = Bitmap.Width * 3.画个图可能更好理解。R、G、B 分别代表3个原色分量字节,BGR就表示一个像素。为了看起来方便在每个像素之间插了个空格,实际上是没有的。X表示补足4的倍数而自动插入的字节。为了符合人类的阅读习惯分行了,其实在计算机内存中应该看成连续的一大段。

该代码在VS2008中编译通过,当使用unsafe关键字时,项目的属性-->生成-->勾选"允许使用不安全代码"

delphi7代码

procedure Convert2Gray(Cnv: TCanvas);
var X, Y, jj: Integer;
Color: LongInt;
R, G, B, Gr: Byte;
begin
with Cnv do
for X := Cliprect.Left to Cliprect.Right do
for Y := Cliprect.Top to Cliprect.Bottom do
begin
Color := ColorToRGB(Pixels[X, Y]);
B := (Color and $FF0000) shr 16;
G := (Color and $FF00) shr 8;
R := (Color and $FF);
Gr := HiByte(R * 77 + G * 151 + B * 28);
jj := gr;
Gr := Trunc(B * 0.11 + G * 0.59 + R * 0.3);
Pixels[X, Y] := RGB(Gr, Gr, Gr);
end;

end;

function RGB(R, G, B: Byte): TColor;
begin
Result := B shl 16 or G shl 8 or R;
end;

procedure TfrmDemo.Button1Click(Sender: TObject);
begin
Screen.Cursor := crHourGlass;
Convert2Gray(Image1.Picture.Bitmap.Canvas);
Screen.Cursor := crDefault;
end;

今天就聊到这里,各位,加油!
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1602

    文章

    21320

    浏览量

    593179
收藏 人收藏

    评论

    相关推荐

    简单聊一聊彩色灰度算法

    R、G、B 分别代表3个原色分量字节,BGR就表示一个像素。为了看起来方便在每个像素之间插了个空格,实际上是没有的。X表示补足4的倍数而自动插入的字节。为了符合人类的阅读习惯分行了,其实在计算机内存中应该看成连续的一大段。
    的头像 发表于 04-18 10:32 131次阅读
    简单聊一聊<b class='flag-5'>彩色</b>转<b class='flag-5'>灰度</b>的<b class='flag-5'>算法</b>

    算法系列:基于 FPGA 的图像边缘检测系统设计(sobel算法

    今天给大侠带来基于 FPGA 的图像边缘检测设计,话不多说,上货。 设计流程如下:mif文件的制作→ 调用 ip 核生成rom以及仿真注意问题→ 灰度处理→ 均值滤波:重点是3*3 像素阵列
    发表于 03-26 16:40

    嵌入式操作教程:7-1 基于CMOS数字摄像头的灰度转换实验

    一、实验目的 学习灰度转换的原理,掌握OV2640 摄像头和VPIF总线的工作原理,实现OV2640 摄像头采集图像并进行实时灰度转换显示在 LCD 上。 二、实验原理 OV2640摄像头
    发表于 01-19 14:52

    基于TIC6000的DSP教学实验箱操作教程:5-18 RGB24图像灰度转换(LCD显示)

    一、实验目的 学习RGB24图像灰度转换的原理,掌握图像的读取方法,并实现在LCD上显示灰度转换前后的图像。 二、实验原理 RGB24图像灰度转换 RGB颜色空间作为一种常用的
    发表于 01-04 15:04

    智慧矿山ai算法系列解析 堵料检测算法功能优势

    智慧矿山AI算法系列中的堵料检测算法的功能优势,了解其重要性和带来的价值
    的头像 发表于 09-28 18:48 356次阅读
    智慧矿山ai<b class='flag-5'>算法系列</b>解析 堵料检测<b class='flag-5'>算法</b>功能优势

    FPGA算法映射要点

    将图像处理的算法转换为FPGA系统设计的过程称为算法映射,CPU并行算法的实现与FPGA并行算法
    的头像 发表于 09-11 10:45 313次阅读
    <b class='flag-5'>FPGA</b><b class='flag-5'>算法</b>映射要点

    机器学习有哪些算法?机器学习分类算法有哪些?机器学习预判有哪些算法

    机器学习有哪些算法?机器学习分类算法有哪些?机器学习预判有哪些算法? 机器
    的头像 发表于 08-17 16:30 1396次阅读

    机器学习算法入门 机器学习算法介绍 机器学习算法对比

    机器学习算法入门 机器学习算法介绍 机器学习算法对比 机器
    的头像 发表于 08-17 16:27 625次阅读

    机器学习算法总结 机器学习算法是什么 机器学习算法优缺点

    机器学习算法总结 机器学习算法是什么?机器学习算法优缺点? 机器
    的头像 发表于 08-17 16:11 1074次阅读

    机器学习算法汇总 机器学习算法分类 机器学习算法模型

    是解决具体问题的一系列步骤,机器学习算法被设计用于从大量的数据中自动学习并不断改进自身的性能。本文将为大家介绍机器学习
    的头像 发表于 08-17 16:11 724次阅读

    怎么用FPGA算法 如何在FPGA上实现最大公约数算法

    各种不同的计算和处理任务,例如数字信号处理(DSP)、图像处理、机器学习、通信协议处理等。FPGA的特点使得它非常适合实现需要高度并行计算和低延迟的算法
    的头像 发表于 08-16 14:31 1830次阅读
    怎么用<b class='flag-5'>FPGA</b>做<b class='flag-5'>算法</b> 如何在<b class='flag-5'>FPGA</b>上实现最大公约数<b class='flag-5'>算法</b>

    建立一个基于FPGA的动态图片显示基础框架

    前面我们设计了基于FPGA的静态图片显示,并对一幅彩色图片提取了灰度学习了RGB转Gray算法
    发表于 07-08 16:57 491次阅读
    建立一个基于<b class='flag-5'>FPGA</b>的动态图片显示基础框架

    荐读:FPGA设计经验之图像处理

    今天和大侠简单聊一聊基于FPGA的图像处理,之前也和各位大侠聊过相关的图像处理,这里面也超链接了几篇,具体如下: 图像边缘检测算法体验步骤(Photoshop,Matlab) 算法系列
    发表于 06-08 15:55

    为什么图片识别要将彩色图像灰度化?

    正式解释这个问题之前,我们需要了解,什么是灰度化?
    的头像 发表于 06-06 10:27 834次阅读
    为什么图片识别要将<b class='flag-5'>彩色</b>图像<b class='flag-5'>灰度</b>化?

    为什么图片识别要将彩色图像灰度化?

        先前在为大家介绍OCR识别技术时,在图像预处理部分提到了灰度化,大家可能会产生疑惑: 为什么做图片识别要将彩色图像灰度化呢?   正式解释这个问题之前,我们需要了解, 什么是灰度
    发表于 05-28 11:36 1688次阅读
    为什么图片识别要将<b class='flag-5'>彩色</b>图像<b class='flag-5'>灰度</b>化?