0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

有了这个农田节水灌溉物联网应用方案,农业种植更科学了

电子设计 来源:互联网 作者:佚名 2017-12-21 09:08 次阅读

物联网是新一代信息技术的重要组成部分,也是“信息化”时代的重要发展阶段。其英文名称是:“Internet of things(IoT)”。顾名思义,物联网就是物物相连的互联网。这有两层意思:其一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;其二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信,也就是物物相息。物联网通过智能感知、识别技术与普适计算等通信感知技术,广泛应用于网络的融合中,也因此被称为继计算机、互联网之后世界信息产业发展的第三次浪潮。物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心的创新2.0是物联网发展的灵魂。

中国是农业大国,在农业上,物联网技术也有出色的表现,下面是物联网在农田节水灌溉上的应用方案。

水是农业的命脉,也是整个国民经济和人类生活的命脉。水资源状况和利用水平已成为评价一个国家一个地区经济能否持续发展的重要指标。我国是一个水资源相对贫乏的国家,年均降水量为630mm,低于全球陆面和亚洲陆面的降水量;年平均淡水资源总量为2.8万亿m3,人均占有水量仅2300m3,只相当于世界人均水平的1/4,居世界第109位,是世界上人均占有水资源最贫乏的13个国家之一;耕地水资源占有量28500 m3/hm2,为世界平均数的4/5。

2 农业用水现状及节水灌溉发展趋势
从全国对水资源量总的需求来看,在出现中等干旱的情况下,全国总需水量为5500亿m3左右,缺水量为250亿m3左右。若考虑供水中的地下水超采和超标准污水直灌等不合理供水因素,则全国实际缺水量在300~400亿m3之间。农业是我国的用水大户,约占全国总用水量的73%,但有效性很差,水资源浪费十分严重,渠灌区水的有效利用率只有40%左右,井灌区也只有60%左右,每m3水生产粮食不足1kg。而一些发达国家水的有效利用率可达80%以上,每m3水生产粮食大体都在2kg以上,其中以色列已达2.32kg。由此说明,我国各种节水农业技术的综合应用程度还十分低下,与发达国家相比还存在着很大的差距。
目前,比较有发展潜力的节水灌溉新技术是:一是与生物技术相结合的作物调控灌溉技术。是从作物生理角度出发,在一定时期主动施加一定程度有益的亏水度,使作物经历有益的亏水锻炼,改善品质,控制上部旺长,实现矮化密植,到达节水增产的目的。二是应用3S技术的精细灌溉技术。就是运用全球卫星定位系统(GPS)和地理信息系统(GIS),遥感技术(RS)和计算机控制系统,实时获取农用小区作物生长实际需求的信息,通过信息处理与分析,按需给作物进行施水的技术,可以最大限度提高水资源的利用率和土地的产业率。这是农田灌溉学科发展的热点和农业新技术革命的重要内容。 三是智能化节水灌溉装备技术。就是把生物学、自动控制、微电子人工智能、信息科学等高新技术集成节水灌溉机械与设备,实时地检测土壤和作物的水分,按照作物不同的需水要求来实施变量施水,达到最优的节水增产效果。
本文所设计的基于物联网技术的农田节水灌溉系统是将上述的三者进行有机的结合,在此基础上运用物联网技术,从而实现全自动化与信息化的节水灌溉系统。

3 系统结构设计
农田节水灌溉系统由土壤水分传感器、物联网终端采集单元、喷灌机控制终端、远程监控计算机系统组成。如图1所示。传感器埋入土壤中,直接获取地表下0~100cm各个深度处的土壤水分信息,并将其转化为0~5V模拟电压信号。物联网终端采集单元一方面用于采集传感器的土壤水分信息,另一方面利用GPRS网络模式将土壤水分信息传递给安装于监控中心的监控计算机。在一个农田节水灌溉监控系统中,根据需要,物联网终端采集单元可以有多个,每个采集终端可以作为一个土壤墒情固定监测站,分布在区域内不同的特征点处进行土壤水分信息采集。监控中心计算机循环接收各个采集终端发送的土壤墒情信息,监控计算机将接收到的数据与数据库中的农作物需水量进行分析、比对,从而形成最佳灌溉方案,然后由监控计算机将灌溉命令下发到喷灌机控制终端,喷灌机控制终端直接控制喷灌机以及深井泵等设备进行灌溉作业。系统结构图如图1所示。

4 系统功能特点
(1) 系统管理,该部分对系统所有的数据表进行结构定义和维护;并对维持系统正常运行的帐户、权限、界面、系统运行参数、文件类别和属性等信息进行管理和维护;定义特定领域的知识规范。
(2) 喷灌机控制,根据土壤墒情信息,系统制定灌溉方案,通过GPRS网络远程控制喷灌机,实现全自动灌溉。
(3) 数据的查询检索功能,具有多种形式和途径的查询检索功能,并以图件、表格或其他形式输出查询结果。查询方式包括点位查询、空间查询和逻辑条件组合查询。
(4) 数据采集单元自动定位,终端数据采集根据放置地点自动将经纬度数据发送至监控中心计算机,中心计算机在操作界面上自动确定并显示数据采集单元的布设地点。
(5) 数据分析功能,针对不同属性进行不同区段的分析,结果以专题图形式提供,可供打印输出。

5 上位机软件结构
监控中心主要由网络服务器和土壤墒情数据处理计算机构成,具有Intemet公网固定IP,其功能是进行数据的实时接收、处理和显示。监控中心计算机软件采用亚控组态王作为开发平台。通过对组态王的二次开发,中心计算机可以实时采集数据并显示,形成数据库、报表,供灌溉预报及决策使用,依据监测数据计算灌水时间与灌水量,将监测与计算结果用图表、曲线显示或打印输出[1]。系统设计将从简洁易用的角度出发,其主要操作界面如图2所示。

6 物联网采集单元的设计
物联网采集单元的设计为本系统的终端采集单元,由于在农田灌溉上检测范围比较大,数量多、布点不固定并只在农耕季节使用等特点考虑,采集终端需要设计成可灵活移动、易于安装的方式,其次在每一个采集终端上安装GPS定位模块,使发送到监控中心计算机上的数据带有地理位置下标,中心计算机根据上传的数据的地理位置下标来确定采集点具体地理位置,从而实现准确的数据采集。另外,由于数据采集单元放置在农田里,采用“太阳能电池板+蓄电池”的形式为采集单元供电

采集终端主要由MCU单元、采集单元、太阳能供电单元、通信单元、GPS定位单元等部分组成,其结构如图3所示。其中,采集单元利用土壤湿温度传感器采集土壤墒情数据,数据经嵌入式微控制器MCU(MicroControUer Unit)处理后,通过GPRS网络发送至监控中心计算机上,中心计算机收集温湿度数据,并自动显示相关信息。土壤传感器输出的信号被信号调理电路处理后传送到子系统内部的模数转换器ADC(AnMog—to—DistalConvener)。MCU定时启动ADC,进行模数转换并取走数据,然后把经过处理的数据通过串行口传送到GPRS模块,并启动该模块将数据发送到GPRS无线网络。数据被GPRS网络接收后经由网关转送至Internet,最后被连接到Intemet的中心站计算机接收[2]。

采集终端的核心控制MCU是整个采集系统的核心,考虑到成本和处理性能的要求,嵌入式MCU选用ATMEL公司生产的低功耗8位微处理器ATmega128作为数据采集子系统的处理器芯片。该芯片硬件资源丰富,具有功耗低、功能多、价格便宜和性能强大等优点。在该终端中核心处理器ATmega128单片机通过COM0直接与GPRS模块相连接,完成对GPRS模块的初始化和基于GPRS网络的数据传输功能。系统中的GPS模块则通过ATmega128的COM1进行通信。ATmega128自身带有128K字节FLASH存储器,下位机程序可直接通过编程下载到片内FLASH中。同时ATmega128再带4K字节的EEPROM存储器,传感器采集数据直接存放在EEPROM中。在该设计中采用的GPRS通信模块和GPS模块接口均为TTL电平接口,可以直接与ATmega128单片机的串行接口进行连接,接口电路如图4、图5所示:

嵌入式GPRS模块的供电为直流5V供电,TXD、RXD为通信接口,在本设计中可直接连接至AVR单片机的串行接口上, ONLINE为在线指示接口,当连接到网络以后该端口输出一个低电平信号,通过74ALS04进行反向以后驱动D1发光二极管,当发光二极管点亮以后便证明现在控制器已连接网络。GPS模块通过单片机的COM2口连接,如图5所示。
在该采集终端中,土壤湿度传感接口为0~5V模拟量接口,所以传感器选择昆仑海岸公司生产的JWSL一5VB保护型温湿度变送器,其输出信号为直流电压信号,范围为0~5V,温度与湿度信号从各自的通道输出,相互独立。传感器输出的信号经过线性转换处理后输入到ATmega128的ADC1引脚,由ATmega128内部的ADC进行模数转换。ATmega128内部的ADC具有8个通道,每通道的分辨率为10bit,输入电压范围为0~5V,能够满足该系统数据巡回采集的需要。传感器信号调理及与ATmega128的接口电路如图6所示。传感器输出的电压信号进入该电路之后,首先经过低通滤波。传感器输出的电压信号本身可能有不稳定因素,加上经过长电缆传送,此过程中还会受到其他设备的干扰,很多中高频噪声叠加到信号中,所以在信号进入处理器的ADC之前,先通过低通滤波器尽可能地把噪声和干扰滤除。这里使用一阶RC低通滤波器进行滤波,截止频率为15.92Hz,可以有效地衰减中高频干扰成分,较好地反映出信号的变化。传感器输出信号通过滤波器后,再经一级电压跟随器缓冲,由R1和R3组成的分压电路转换成0—4.09V的电压信号后,再经一级缓冲,最后送人处理器的ADC1端口(温度信号送ADC1,湿度信号送ADC2)[2]。

7 结束语
本文设计的基于物联网技术的节水灌溉控制系统依据土壤墒情和作物需水情况制定最优灌溉方案,对作物实行按需灌溉,最大限度的降低水资源的消耗,缓解水资源日趋紧张的矛盾,并且还为作物提供了更好的生长环境,充沛发扬现有节水配备的作用,优化调度,提高效益。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2526

    文章

    48092

    浏览量

    740016
  • 物联网
    +关注

    关注

    2868

    文章

    41622

    浏览量

    358343
  • 节水灌溉
    +关注

    关注

    0

    文章

    16

    浏览量

    7734
  • 信息采集
    +关注

    关注

    0

    文章

    81

    浏览量

    21065
收藏 人收藏

    评论

    相关推荐

    农业联网助力打造节水灌溉智能管理系统

    通过节水灌溉智能管理系统。我们能够精确控制灌溉水量、减少水资源的浪费,从而提高灌溉效率。这有助于节约水资源,还有利于提高农业生产的效率。物通
    的头像 发表于 03-03 16:56 271次阅读
    <b class='flag-5'>农业</b>物<b class='flag-5'>联网</b>助力打造<b class='flag-5'>节水</b><b class='flag-5'>灌溉</b>智能管理系统

    智能节水灌溉系统解决方案

    低、效率慢等难题,节水、节肥、省工地灌溉农业。 智能节水灌溉系统解决方案,为实现现代
    的头像 发表于 01-22 16:47 444次阅读

    智能节水灌溉系统

    智能灌溉,物联网技术和智能节水灌溉系统的结合,使得农业生产更为智能化,是实现批量化灌溉作业的理想
    的头像 发表于 01-15 16:27 814次阅读

    农业灌溉电磁阀控制器:让农田灌溉更智能,更便捷!

    农业灌溉电磁阀控制器,让农田灌溉变得更加智能、高效、自动化。告别繁琐的操作,拥抱科技的力量,让你从此轻松应对农田灌溉的各种挑战。
    的头像 发表于 01-11 17:34 235次阅读
    <b class='flag-5'>农业</b><b class='flag-5'>灌溉</b>电磁阀控制器:让<b class='flag-5'>农田灌溉</b>更智能,更便捷!

    水利灌溉联网远程监控及管理系统解决方案

    土壤改良、农田灌排设施等短板,统筹推进高效节水灌溉,健全长效管护机制。 水资源的日益紧缺已是全球性问题。其中农业用水存在的水资源利用效率低、用水浪费等问题受到国家的重点关注。而在国家政
    的头像 发表于 01-04 18:56 137次阅读

    Modbus转ethercat网关在农业中的应用主要体现

    控制。例如,当土壤湿度传感器检测到土壤湿度低于设定值时,网关可以通过Modbus协议控制智能灌溉设备自动开启,实现精准灌溉农业联网应用:
    发表于 12-31 08:42

    农业智能灌溉控制系统

    我国是农业大国,由于水资源在时间与空间上分布不均匀,人均水资源显得更加匮乏,因此需要提升水资源的利用及各地区农业灌溉方式的不同,大力发展节水灌溉
    的头像 发表于 12-01 17:48 541次阅读

    智能农业灌溉系统解决方案,手机远程控制,一键灌溉大田

    之外,也能一键灌溉农田。 系统架构: 智能农业灌溉系统解决方案,采用物联网、移动互
    的头像 发表于 11-15 16:14 856次阅读

    智能农业灌溉系统,定时控制,让农业生产信息化

    联网技术的飞速发展与应用,已经应用到了农业的许多领域,包括农业环境监测、温室管理、节水灌溉、气象监测、土壤墒情监测等方面。涉及田间
    的头像 发表于 11-03 17:04 767次阅读

    农田连片,农业灌溉一体化泵房助农增产

    在中国,农业耕地分散,并不利于实现集约型灌溉系统的打造,淡水资源匮乏且分布不均的矛盾日益凸显,为解决这一问题,政府提出了“打造高标准农田灌溉项目”的建设项目,将农业耕地连成片,这对于大
    的头像 发表于 08-29 16:13 260次阅读
    <b class='flag-5'>农田</b>连片,<b class='flag-5'>农业</b><b class='flag-5'>灌溉</b>一体化泵房助农增产

    智能节水灌溉远程监控解决方案

    随着经济社会的飞速发展,农业在其中的份量功不可没。农田灌溉农业生产中的重中之重,但传统农田灌溉管理存在较大弊端,机井分散,不便管理,造成水资源的浪费,地下水严重匮乏,
    的头像 发表于 08-22 09:51 240次阅读

    农业联网提供节水新思维

    我国农业用水量居高不下,但利用率仍没有到达预期目标,出现用水严重浪费的现象。随着土地政策的不断更新,农业行业的发展趋势逐渐转变为区域规模化种植农业
    的头像 发表于 07-25 16:39 238次阅读

    农田灌溉控制系统方案

    农业生产管理的发展向智能化、规模化前进,由传统的充分灌溉向非充分灌溉发展,在不影响农作物产量的前提下,尽可能提升水资源的利用率,用新技术推动我国农业,由传统的劳动密集型向技术密集型转变
    的头像 发表于 05-30 16:04 457次阅读

    液位传感器在农田灌溉水位测量中的技术方案

    我国传统农业灌溉法基本都是采用“地面灌溉”。而农业灌溉用水达到60%以上,据统计全国农田灌溉的一
    的头像 发表于 05-06 14:26 460次阅读
    液位传感器在<b class='flag-5'>农田灌溉</b>水位测量中的技术<b class='flag-5'>方案</b>

    节水灌溉联网解决方案

    间日常耕作影响大,一旦线缆破损,会影响整套系统的运行,检查维修比较麻烦,大田布线施工及材料成本也较高。 针对上述问题,基于物联网、云计算、无线通讯等技术,融合农业灌溉形成了一套节水
    的头像 发表于 04-28 16:48 335次阅读