ADC信号调理电路及应用方案设计

ZLG致远电子 2017-10-17 14:20 次阅读

周立功教授新书《面向AMetal框架与接口的编程(上)》,对AMetal框架进行了详细介绍,通过阅读这本书,你可以学到高度复用的软件设计原则和面向接口编程的开发思想,聚焦自己的“核心域”,改变自己的编程思维,实现企业和个人的共同进步。经周立功教授授权,即日起,致远电子公众号将对该书内容进行连载,愿共勉之。

第二章为ADC 信号调理电路设计,本文为 2.1 应用背景和2.2 电路设计

本章导读:

对于开发者来说,最难的是模拟电路的设计。不仅需要投入大量的仪器设备,而且还需要理论水平很高且实践经验很丰富的指导老师,才有可能设计出符合要求的模拟电路。通过分析用户设计的模拟电路,发现大多数开发者对模拟电路的设计细节知之甚少。

虽然很多半导体公司提供了琳琅满目的设计参考资料,但介绍到某些关键之处时还是让人感到语焉不详,这就是大部分开发者对模拟电路仍然心有余悸的原因。就拿MCU 供应商来说,其提供的资料更多的是数字电路的设计和基本的软件资料。几乎所有的MCU 供应商都不提供具有一定价值的应用电路设计参考,各个厂商提供的资料可以说千篇一律,你想要的没有。其实这些知识对于开发者来说都属于非核心域知识,却要花费很多时间投入其中。

基于此,我们对MCU 内部提供的各种各样的ADC 所需的外围电路进行了标准化的设计,期望推动整个行业的设计水平。因为无论任何需求都存在共性和差异性,所以只要掌握正确设计方法,就能够达到举一反三的效果。

2.1 应用背景

>>> 2.1.1 标称精度

LPC824 内部有一个12 位SAR 型ADC,多达12 个输入通道以及多个内部和外部触发器输入,其采样率高达1.2MS/s。与独立12 位ADC 芯片相比,手册标注的关键参数非常接近,理论上可以实现比较好的采集精度,详见表2.1。在实际的应用中,用户测试结果和标称值相差很远,表现出内部ADC 精度差,这是ADC 外部电路设计不合理所造成的。

表2.1 LPC82x 内部ADC 关键参数

>>> 2.1.2 外围电路

如图2.1 所示使用LPC82x 内部ADC 的采样系统,所需外围支持电路包含基准源、供电电源、驱动电路、信号调理电路等几部分,从原理上看这几部分都影响ADC 的性能指标。

图2.1 内部ADC 所需的外围支持电路

>>> 2.1.3 干扰源

绝大多数MCU 内部集成的ADC 几乎都是逐次逼近(SAR)型,因为它使用开关电容结构,半导体工艺容易实现。由于SAR 型ADC 有多个有效输入端口,因此也容易受到干扰。典型SAR 型ADC 内部结构详见图2.2,分析它的工作原理有助于理解干扰的引入路径。

图2.2 SAR 型ADC 内部结构

它通过两个阶段确定ADC输出码,由于采集阶段开关SW+和SW-最初是关闭的,所有开关均连接到IN+和IN-模拟输入,因此各电容用作采样电容,实现采集输入端的模拟信号。在转换阶段SW+和SW-是打开的,模拟输入与内各部电容断开,电容作用到比较器输入时,将导致比较器不稳定。AR 算法从MSB 开始,切换REF 与REFGND 之间的权电容阵列的各元件,使比较器重新回到平衡状态,由此将产生代表模拟输入的输出数字代码。

转换过程中代表被测输入信号的总电量,在权电容阵列中的各电容两端不断重复分布,每bit 的转换数据都根据与基准源的比较结果产生,从而决定输出代码是0 还是1,基准源上的任何噪声都会对输出代码产生直接影响。如果比较过程中电源端、地回路存在干扰,使得内部比较器的结果变动,同样也会间接导致ADC 输出数据位不稳定,详见图2.3。

图2.3 SAR 型ADC 有多个有效输入端口

SAR 型ADC 这种多次反复比较结构,基准源、电源、地、或数字接口都有可能串入干扰信号,等效于存在多个有效输入端口,而不仅仅只有一个信号输入端。防止外部干扰信号,从ADC 信号输入端以外的引脚耦合进来,才能得到到稳定的数据输出。

2.2 电路设计

提高内部SAR 型ADC 精度的要点在于逐一排除各有效输入端口上的干扰,详见图2.4。

图2.4 消除ADC 外围支持电路干扰的方法

根据对精度的影响程度,电压基准源电路的设计占80%的工作量,低噪声模拟电源占5%,输入端瞬态驱动占5%,其它抗干扰措施占10%。

>>> 2.2.1 基准源

基准电压直接影响ADC 数字输出,要求低噪声、低输出阻抗、温度稳定性良好,标准化电路详见图2.5。

图2.5 低噪声与低输出阻抗基准电压源电路

其中,C2、C1 是内部ADC 参考源管脚的储能电容,R2、R3 用于设定参考源芯片NCP431的输出电压,R1 用于设定NCP431 的静态工作电流,磁珠FB1 与R1 串联,与C2 形成低通滤波器,滤除基准源供电3.3V 上可能存在的高频干扰。

1. 低噪声和低输出阻抗

基准电压源芯片使用低成本NCP431,输出噪声10uVpp,输出阻抗0.2Ω。噪声值用于12 位精度已经足够低,但动态输出阻抗0.2Ω 偏大。利用图2.5 中储能或去耦电容C2、C1的低高频阻抗,提供ADC 转换时基准源管脚上的瞬间高频电流,能非常好地解决基准源高频输出阻抗问题。

需要注意VREF 管脚上的10uF电容C2 不是旁路电容,而是SAR型ADC 的一部分,这个大电容不适合放在硅片上。在位判断期间,由于各输出位会在数十纳秒或更快的时间内建立,因此该储能电容是用来补充开关电容阵列的,从而与内部电容阵列上已有电荷一起平衡比较器。此大容值储能电容需要满足ADC 位判断建立时间要求。为了降低它的高频ESR,C2 优先选用X5R 材质贴片陶瓷电容,确保靠近基准源管脚VREFP 放置,并且在接近VREFN 模拟地管脚处接地,详见图2.6。

图2.6 VREF 管脚储能电容与芯片在/不在同一面的放置方法

2.  静态工作电流

NCP431 是并联型基准,原理类似稳压二极管,只能吸收电流,详见图2.7。在提供负载电流时,维持基准源两端电压不变,使流过限流电阻R1 的总电流不变,调节基准源自身的静态电流减小,使得负载上的电流增加。需计算R1 取值,保证在最大负载电流情况下,有最够的剩余静态电流。

图2.7 并联型的静态工作电流

NCP431 手册中的最小静态电流I(KA)min 为1mA,NCP431 输出电压调节电阻R2、R3 所吸收电流I(FB)为0.5mA,LPC82x 的REF 管脚所吸收平均电流I(REF),约为100uA,留出裕量取1.5mA。总的静态电流取3mA,算得决定静态工作电流R1 的阻值:

3.  输出电压选择

根据LPC82x 手册,为了获得最佳性能,VREFP 和VREFN 应当选择与VDD 和VSS 相同的电压电平。若VREFP 和VREFN 选择不同于VDD 和VSS 的值,则应当确保电压中间值是相同的:

实际测试发现基准电压设置到3.0V 精度最理想,若再升高至接近LPC82x 的电源电压3.3V,因为接近电源轨,ADC 的INL 实测值开始下降,因此标准电路中使用R2、R3 将NCP431的输出电压调整到此值,计算如下:

4.  温漂与直流精度

温漂和初始直流精度是基准源芯片的固有参数,温漂越低初始精度越高,成本越高,温漂25ppm 以下的基准几乎都已经超过LPC82x 芯片自身成本,详见表2.2。

表2.2 基准电压源参数与成本

综合考虑NCP431 是相对合适的选择,它是ONSemi 对TL431 的改进版本,最大温漂由原92 ppm/℃改进为50 ppm/℃,初始准确度优于0.5%。以25℃为参考温度,在-40℃~+85℃范围内,该温漂值引入的误差约为0.3%,基本符合12 位ADC 采集精度的应用。

需要注意标准化电路中R2、R3 影响NCP431 的温漂,应该选择低温漂系数25ppm以下电阻。如果考虑节省成本或者没有可选电阻,为了不影响基准温漂,使用如图2.8 所示的2.5V 输出电路替代。

图2.8 不使用外部电阻的NCP431 基准源电路

基准电压由3V 下降至2.5V 之后,对LPC82x 内部ADC 的INL 会有轻微影响。

>>> 2.2.2 低噪声模拟电源

为避免从电源端口串入干扰,需要低噪声的供电电源。利用线性稳压器的纹波抑制比,可以从通常的数字环境开关电源获得此低噪声电源,详见图2.9。

图2.9 低噪声模拟电源电路

使用FB2、R4、C5 所组成的无源滤波网络,可以有效改善1117 在高频段纹波抑制比下降的问题,实现从低频至高频的纹波噪声抑制。其中R3 与C5 形成截止频率1.59KHz 的低通滤波器,使得3.3V 电源上常见的100kHz 以上开关电源纹波干扰衰减10dB 以上。磁珠FB2 在高频时呈现高阻抗,结合C5 在高频时形成更高衰减倍数的低通滤波器,有效滤除3.3V电源上尖峰毛刺噪声。

线性稳压器使用SPX1117,纹波抑制比曲线详见图2.10,在低频至10kHz 频段有接近-60dB 的良好纹波抑制比,100kHz 之后快速下降。

图2.10 SPX1117 的纹波抑制比

线性稳压器U2 应该靠近LPC82x 放置,其他数字电路不共用MCU 的3.3V 电源,如果考虑成本需要共用,数字部分电源单独用LC 滤波电路隔离。

>>> 2.2.3 瞬态驱动

SAR 型ADC 输入端在采样期间具有瞬间充电过程,如果不处理信号源阻抗与内部采样电容的建立时间问题,不管是微处理器中内置的还是外置的ADC,都得不到最好的输出精度。标准化电路中使用运放加RC 组合电路详见图2.11。

图2.11 内部ADC 输入端瞬态驱动电路

通过典型SAR 型ADC 输入端等效电路,有助于理解瞬态驱动电路。如图2.12 所示输入端等效为一个开关S1 连接一个接到地的电容CSH,在电压采样之前,采样电容CSH 通过开关S2 连到电源、电压参考或地进行预充电,预充电电压值由ADC 内部电路决定。电压采样开始时,S2 打开S1 闭合。

图2.12 SAR 型ADC 输入端等效电路

当S1 闭合时,驱动电路从CSH 注入或吸出电荷,而ADC 需要一定的时间来采样信号。在这个采样时间里,ADC 需要从驱动电路汲取足够的电荷量给CSH,使得系统达到1/2-LSB 的精度范围之内。

如果信号源阻抗RO 过大,RORs1RS1、CSH 组成的RC 网络时间常数过大,导致采样时间内CSH 上的电压建立时间不足,采集到的电压值将下降。比较好的解决方法详见图2.12,添加运放缓冲降低信号源内阻,无论信号源阻抗RO 高或者低都不会影响精度。

直接使用运放驱动ADC 输入端时,S1 闭合瞬间的充电电流会干扰运放的输出电压,从而导致ADC 输出结果不准确。为了使设计的电路精度到达更高,应该在运放与ADC 之间添加一个电阻Rin 电容CinCin 是作为一个电荷存储器,在采样瞬间为ADC 的输入端提供足够的电荷,而Rin 用于避免运放驱动容性负载,使得运放工作更加稳定。

>>> 2.2.4 输入信号滤波

输入信号自身可能包含有不期望的干扰信号,在输入电路上添加滤波器抑制干扰,是必要的硬件抗干扰措施。如果通过采样数据的后期数据处理滤除干扰,根据采样定理,必须在硬件上设置抗混叠滤波器,限制输入信号带宽至1/2 采样频率以下。

1.  有源滤波器

标准化电路中复用ADC 驱动运放,实现三阶有源低通滤波器,详见图2.13。

图2.13 三阶低通有源滤波器

滤波器的低通截止频率设置为9kHz,类型为三阶贝塞尔,具有良好的衰减特性。并且使用图2.13 中的3 阶电路形式,避免了常规单运放实现二阶Sallen-Key 型滤波器拓扑,由于运放带宽不够,出现的高频馈通问题。即使用带宽不高的运放LMV358A,也不会出现高频信号穿透滤波器,详见图2.14。

图2.14 三阶滤波器的频率响应

2.  电阻噪声与运放的电源抑制比

一般来说,有源滤波器自身可能产生噪声,通常称之为器件噪声,其分别为电阻的热噪声、运放的电压输出噪声。电阻值越大所引入的电阻噪声越大,1kΩ 电阻的Johnson 噪声大约是4nV/(Hz)1/2,这个数值以电阻的平方根规律变化。若考虑到电阻噪声,推荐的阻值是1~10kΩ。电阻噪声最后可以归结到的滤波电路中被滤除,但是它和运放输出噪声是电路中噪声产生的源头,在设计时要予以考虑,适当的采用低阻值电阻和低噪声运放。

此外需考虑运放的电源抑制比。电源上的噪声会随着每个有源器件的电源引脚传导到信号通路中,作为ADC 驱动放大器的运放,其自身的电源抑制比若不能抑制这些噪声的话,噪声就会叠加到运放的输出中。特别是电路中采用了开关电源供电时,电源上会有高频尖峰电压噪声,而运放的电源抑制比在高频时通常下降得厉害,对它们没有抑制作用。以标准电路图中所用的运放LMV358A 为例,其电源抑制比详见图2.15。

图2.15 LMV358A 电源抑制比

解决这个问题简单方法是采用RC 低通滤波器对运放电源进行滤波,滤除其电源抑制比较低的高频成分,如图2.13 所示的R4、C7。若将运放的电源端视为高阻抗(其工作电流小),算得RC 滤波器的截止频率约为:1.6kHz,可以对高频干扰信号起到有效衰减。

3.  运放选型

使用LPC82x 内部ADC 的采集应用,通常对器件成本的要求非常严酷,标准化电路设计考虑使用最低成本运放——LM358 系列。

经典运放器件通常存在两个问题,单电源条件下输入和输出信号范围不能达到电源电压(输入输出不能轨至轨),信号测量范围窄;输入失调电压与偏置电流比较大,直流精度影响大,因此不能使用。但现在已经有不少厂家生产LM358 兼容或改进产品,详见表2.3。

表2.3 低成本运放参数选型

表中的数据表明,只有3peak 公司的改进型器件LMV358A,同时支持轨至轨输入与输出,FET 输入级并且失调电压比较低,成本与原LM358 一致,能够符合应用需求,因此标准化电路最终选用LMV358A。

>>> 2.2.5 模拟地与数字地

具有内部ADC 的MCU 一般有独立AGND管脚,以及普通GND 管脚。如何把AGND 连接到GND 往往模糊不清,避免二者相互干扰的最优设计方法是,AGND 和GND 管脚都就近接到地平面,详见图2.16。

图2.16 AGND 与GND 的连接处理

了解混合信号IC 内部的接地管脚结构,有助于理解IC 设置独立模拟地、数字地管脚的意图,详见图2.17。使接地管脚保持独立,可以避免将数字信号耦合至模拟电路内。在IC 内部,将硅片焊盘连接到封装引脚的邦定线难免产生线焊电感LPLP  和电阻RPRP,IC 设计人员对此是无能为力的。如果共用地管脚,快速变化的数字电流在B 点产生电压,对于模拟电路无法接受,IC 设计人员意图分开接地管脚,排除此影响。

图2.17 IC 内部模拟与数字地的连接情况

但是,分开之后B 点电压还会通过杂散电容CSTRAYCSTRAY 耦合至模拟电路的A 点。IC封装每个引脚间约有0.2 pF 的寄生电容,是无法避免的。为了防止进一步耦合,AGND 和DGND 应通过最短的引线在外部连在一起,并接到模拟接地层。DGND 连接内的任何额外阻抗将在B 点产生更多数字噪声;继而使更多数字噪声通过杂散电容耦合至模拟电路。

>>> 2.2.6 I/O 扇出电流

由于LPC82x 只有一个电源管脚,即MCU 数字电源与内部ADC 模拟电源共用。虽然这样设计可以在小封装中提供尽可能多的I/O 口,但是对模拟部分会带来干扰问题:MCU工作时在电源上产生数字开关电流,通过共用管脚产生噪声电压,干扰内部ADC。下面的优化建议可以很大程度上避免干扰:

  • 避免I/O 口直接驱动大电流,使用三极管或逻辑芯片间接驱动,详见图2.18;

  • 若条件允许,则切换到低功耗模式下执行ADC 采集。

图2.18 使用驱动电路减小I/O 扇出


ZLG致远电子 技术专区

原文标题:周立功:ADC 信号调理电路设计应用背景和电路设计

文章出处:【微信号:ZLG_zhiyuan,微信公众号:ZLG致远电子】欢迎添加关注!文章转载请注明出处。

关注电子发烧友微信

有趣有料的资讯及技术干货

下载发烧友APP

打造属于您的人脉电子圈

关注发烧友课堂

锁定最新课程活动及技术直播
收藏 人收藏
分享:

评论

相关推荐

模拟电子和数字电子技术的区别及应用

这个是硬件方面的技术,这个需要你从事的工作,如果你从事的是硬件设计的或者是计算机的底层驱动编程,那么....

发表于 04-17 11:52 27次阅读
模拟电子和数字电子技术的区别及应用

simulink中的bandpass filter带通滤波器问题

发表于 04-16 22:40 82次阅读
simulink中的bandpass filter带通滤波器问题

通常都要采用昂贵的,还要在制造过程中采用手工装配.

发表于 04-13 19:30 538次阅读
通常都要采用昂贵的,还要在制造过程中采用手工装配.

【下载】《Analysis and Design of Analog Integrated Circuits》

发表于 04-13 17:45 299次阅读
【下载】《Analysis and Design of Analog Integrated Circuits》

求电路分析

RF-PRESS-IN 为4-20ma电流 怎么分析转换的电压

发表于 04-13 11:07 28次阅读
求电路分析

基于Linux操作系统设计一种新型数字超声探伤仪

超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中....

发表于 04-12 17:59 72次阅读
基于Linux操作系统设计一种新型数字超声探伤仪

模拟电子中的两大重点:场管和运放

场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有 N 沟道....

发表于 04-10 17:15 77次阅读
模拟电子中的两大重点:场管和运放

经典滤波和现代滤波电路剖析

经典滤波的概念,是根据傅里叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信....

发表于 03-29 02:19 233次阅读
经典滤波和现代滤波电路剖析

使用如图的电路去评判一个电阻的好坏是否合适

发表于 03-28 17:39 459次阅读
使用如图的电路去评判一个电阻的好坏是否合适

面向信号处理与通信系统的下一代设计流程

在完成算法设计和系统架构后,许多开发周期的下一步是FPGA实现和数字部分的验证,有时候会作为ASIC....

发表于 03-28 14:55 129次阅读
面向信号处理与通信系统的下一代设计流程

如何克服邻近电路的巨大电磁干扰源

单端数据传输仅使用一条信号线,其电势被看作接地。在信号线为信号电流提供正向通道时,接地线会提供回流通....

的头像 电子设计 发表于 03-28 09:18 1287次阅读
如何克服邻近电路的巨大电磁干扰源

想做一个简单的基于LABVIEW信号处理有大神能提供一哈思路吗?

发表于 03-24 13:16 237次阅读
想做一个简单的基于LABVIEW信号处理有大神能提供一哈思路吗?

制造出超声波成像系统样机,只需三个月

产品上市时间对于医疗产品至关重要。产品发布时间差几个月会对项目投资收益率 (ROI) 产生极大的影响....

的头像 电子设计 发表于 03-21 08:29 1635次阅读
制造出超声波成像系统样机,只需三个月

三句话讲清环路分析,轻松检测控制系统稳定性

尽管环路分析是检测控制系统稳定性的重要手段,但是测试过程中有诸多细节需要注意。如何快速理解环路分析的....

的头像 ZLG致远电子 发表于 03-21 08:04 1067次阅读
三句话讲清环路分析,轻松检测控制系统稳定性

光学心率感测设计的系统集成考量,心率监测逐渐成为可穿戴电子标配

设计与实现一个光学心率监测(HRM)系统是一类复杂的、涉及多个领域的项目。设计要素包括人体工程学、信....

的头像 SiliconLabs 发表于 03-20 16:32 429次阅读
光学心率感测设计的系统集成考量,心率监测逐渐成为可穿戴电子标配

完整μModule产品系列,电源、接口和信号链路不可少!

混合电路技术依然存在似乎令人惊讶。不过,政府常常有更广泛的考虑,包括相对于创新和复杂运行要求,考虑产....

的头像 亚德诺半导体 发表于 03-20 09:15 1101次阅读
完整μModule产品系列,电源、接口和信号链路不可少!

CEVA发布业界首个802.11ax Wi

CEVA,智能和互联设备的信号处理IP授权许可厂商 (纳斯达克股票交易所代码:CEVA) 发布面向客....

发表于 03-19 11:54 260次阅读
CEVA发布业界首个802.11ax Wi

模拟电子经典的200个问答,收藏备用!

半导体行业观察:半导体材料制作电子器件与传统的真空电子器件相比有什么特点? 关键词:模拟电子

的头像 半导体行业观察 发表于 03-15 11:07 636次阅读
模拟电子经典的200个问答,收藏备用!

如何正确选型集成运放的种类和型号

专用型运放是某一项性能指标较高的运放,它的其他性能指标不一定高,有时甚至可能比通用型运放还低,选用时....

发表于 03-13 16:06 363次阅读
如何正确选型集成运放的种类和型号

温度采集及信号处理模块

发表于 03-08 11:17 388次阅读
温度采集及信号处理模块

简单栅极脉冲驱动电路,最短时间开启或关闭RF源?

在脉冲雷达应用中,从发射到接收操作的过渡期间需要快速开启/关闭高功率放大器 (HPA)。典型的转换时....

的头像 Excelpoint世健 发表于 03-06 08:36 1689次阅读
简单栅极脉冲驱动电路,最短时间开启或关闭RF源?

学习硬件必须掌握的基础知识点总结

如果你认为这么多书,怎么看都看不完。那是以一种静止、偏面的观点来分析问题了。其实上介绍那么多课,很多....

的头像 电子工程专辑 发表于 03-04 15:28 1528次阅读
学习硬件必须掌握的基础知识点总结

ICL7107芯片在微机检测系统中的应用

本文开始对ICL7107进行了详细的介绍,其中包括了ICL7107的基本特点、引脚图及功能、介绍了I....

发表于 02-11 11:35 377次阅读
ICL7107芯片在微机检测系统中的应用

视频会议的音视频信号分析

会议室型视频会议系统中,由于各种应用的要求不同以各种条件的限制,音视输入、输出设备的配置是比较复杂的....

的头像 讯维官方公众号 发表于 02-10 10:36 895次阅读
视频会议的音视频信号分析

百条模电的基础知识点

1.在常温下,硅二极管的门槛电压约为0.5V,导通后在较大电流下的正向压降约为0.7V;锗二极管的....

发表于 02-07 10:59 884次阅读
百条模电的基础知识点

100个模拟电子基础问题详解

1、空穴是一种载流子吗?空穴导电时电子运动吗? 答:不是,但是在它的运动中可以将其等效为载流子。空....

发表于 02-07 09:57 334次阅读
100个模拟电子基础问题详解

从硬件角度解析下这个USB Type-C

我来从硬件角度解析下这个USB Type-C,顺便解惑。尺寸小,支持正反插,速度快(10Gb)。这个....

的头像 单片机精讲吴鉴鹰 发表于 01-23 08:53 4654次阅读
从硬件角度解析下这个USB Type-C

利用发生正弦波控制,成功设计和制作一个振荡器

振荡电路的作用是发生正弦波,正弦波可以用于为TTL电路提供控制信号,因此振荡电路是大家在进行电路设计....

的头像 单片机爱好者 发表于 01-22 09:40 2461次阅读
利用发生正弦波控制,成功设计和制作一个振荡器

labview均值(逐点)的初始化如何使用

发表于 01-19 11:35 262次阅读
labview均值(逐点)的初始化如何使用

模拟电子电路的八大基础模块概念解析

在电子电路中,电源、放大、振荡和调制电路被称为模拟电子电路,因为它们加工和处理的是连续变化的模拟信号....

发表于 01-18 14:51 582次阅读
模拟电子电路的八大基础模块概念解析

模拟电子技术重难点讲解分析

在绪论课中,除了简要介绍电子技术的发展及其应用概况,本课程的性质、任务和要求以及基本内容外,还应着重....

发表于 01-18 14:49 652次阅读
模拟电子技术重难点讲解分析

串行外围设备接口控制方式及数据传输

SPI简介SPI,是英语Serial Peripheral interface的缩写,顾名思义就是....

的头像 至秦单片机 发表于 01-17 08:39 2126次阅读
串行外围设备接口控制方式及数据传输

两个测量通道信号之间互相干扰,如何解决?

工程师在使用示波器测量开关电源输出信号时,经常会发现两个测量通道信号之间互相干扰(串扰)。其实改变一....

的头像 ZLG致远电子 发表于 01-10 06:45 3138次阅读
两个测量通道信号之间互相干扰,如何解决?

数据采集配置、存储及现场测试应用详解

为什么记录了许久但导出文件却发现没有数据,为什么采样数据文件找不到,为什么趋势图不显示,为什么设置了....

的头像 ZLG致远电子 发表于 01-10 06:42 2355次阅读
数据采集配置、存储及现场测试应用详解

电设备对电压波动的敏感度究竟如何

在冬天的晚上,经常遇到供电不足的情况,电灯打开后也要等好一会才逐渐变亮,有时还出现忽明忽暗的闪烁,这....

的头像 ZLG致远电子 发表于 01-10 06:36 2362次阅读
电设备对电压波动的敏感度究竟如何

索喜科技成功研发可实现8K实时发送的媒体播放器

索喜科技通过搭载4枚LSI“MB86M31”组成8K HEVC实时编码系统,配合媒体播放器s8,完成....

发表于 01-05 15:52 194次阅读
索喜科技成功研发可实现8K实时发送的媒体播放器

如何进行嵌入式诊断设计?这些方法拿走不谢

为及时、准确地检测隔离内部故障,支持新一代飞机视情维修和自主式保障的实现,提高飞机的保障性和经济可承....

的头像 电子设计 发表于 01-04 07:29 2721次阅读
如何进行嵌入式诊断设计?这些方法拿走不谢

【下载】《模拟集成电路的分析与设计(英文版)》

发表于 01-03 18:24 2901次阅读
【下载】《模拟集成电路的分析与设计(英文版)》

开源软件定义无线电设备内部结构及应用设计

与模拟电路相比数字电路具有更多的优势,能够提供更好的性能比如灵敏度、动态范围、处理速度和精确度等,现....

的头像 FPGA开发圈 发表于 12-27 09:12 2504次阅读
开源软件定义无线电设备内部结构及应用设计

MCU模式和RGB模式,区别究竟在哪?

LCD的接口有多种,分类很细。主要看LCD的驱动方式和控制方式,目前手机上的彩色LCD的连接方式一般....

的头像 玩转单片机 发表于 12-27 06:59 2492次阅读
MCU模式和RGB模式,区别究竟在哪?

【下载】《国外名校最新教材精选:模拟CMOS集成电路设计》

发表于 12-20 17:57 3650次阅读
【下载】《国外名校最新教材精选:模拟CMOS集成电路设计》

集成运放与晶体管组成的功率放大器《喇叭》

发表于 12-18 22:50 388次阅读
集成运放与晶体管组成的功率放大器《喇叭》

远传信号要用电流源,起点为什么不是0mA?

工业上经常需要测量温度、压力、风速等非电物理量,这些通常都需要转换成模拟量才能传输到控制室或显示设备....

的头像 ZLG致远电子 发表于 12-06 06:34 3830次阅读
远传信号要用电流源,起点为什么不是0mA?

学好adc信号调理电路设计,你只需把握这几个知识点就可以

阅读本文你可以学到高度复用的软件设计原则和面向接口编程的开发思想,聚焦自己的“核心域”,改变自己的编....

的头像 周立功单片机 发表于 12-02 07:49 2998次阅读
学好adc信号调理电路设计,你只需把握这几个知识点就可以

lpc824 和lpc84x 微控制器的区别和联系

随着物联网技术的发展,MCU 处理器的能力日益强大,如今的MCU 与微处理器的界线越来越模糊,将会进....

的头像 周立功单片机 发表于 11-28 08:38 1779次阅读
lpc824 和lpc84x 微控制器的区别和联系

信号处理的复频域分析方法推荐

连续时间系统的复频域分析

的头像 信号与系统和数字信号处理 发表于 11-25 07:40 3143次阅读
信号处理的复频域分析方法推荐

噪声和图像信号A/D 转换器深入解读

《面向AMetal框架与接口的编程(上)》一书对AMetal框架进行了详细介绍,通过阅读这本书,你可....

的头像 ZLG致远电子 发表于 11-20 08:54 3735次阅读
噪声和图像信号A/D 转换器深入解读

基于FPGA的多路卫星信号处理系统设计实现方案及验证

卫星通信是当前重要的通信手段之一。针对原有单路解调器的不足,本文提出利用软件无线电思想,通过FPGA....

发表于 11-18 08:26 206次阅读
基于FPGA的多路卫星信号处理系统设计实现方案及验证

模拟电子设计,引发噪声这11大原因

噪声是模拟电路设计的一个核心问题,它会直接影响能从测量中提取的信息量,以及获得所需信息的经济成本。遗....

的头像 贸泽电子设计圈 发表于 11-06 08:48 3773次阅读
模拟电子设计,引发噪声这11大原因

小波分析在信号处理的分析应用

由传感器所检测到的奇异信号往往载有设备运行状态特征的重要信息。判断状态信号的奇异点出现时刻,并对信号....

发表于 11-01 11:06 317次阅读
小波分析在信号处理的分析应用

对于PCB上的表层走线,有着大学问!

很多人对于PCB走线的参考平面感到迷惑,经常有人问:对于内层走线,如果走线一侧是VCC,另一侧是GN....

的头像 贸泽电子设计圈 发表于 11-01 08:57 4011次阅读
对于PCB上的表层走线,有着大学问!

使用运放的时候,有哪些需要注意?

运算放大器,对于学工科的学生来说是一个耳熟能详的词。运算放大器作为最通用的模拟器件,广泛运用于信号变....

的头像 贸泽电子设计圈 发表于 10-31 16:02 4216次阅读
使用运放的时候,有哪些需要注意?

电子工程设计这些总结,真是太棒了!

1、什么是二极管的正偏?在p节加正电压,而n节加负电压。即为正偏。正偏是扩散电流大大增加,反偏使漂移....

的头像 贸泽电子设计圈 发表于 10-31 16:00 2006次阅读
电子工程设计这些总结,真是太棒了!

与你一起揭开LR寄存器的神秘面纱

不知你在DEBUG程序,又或者阅读操作系统源码时候有没细心观察,从一个普通子函数返回与异常(中断)返....

的头像 周立功单片机 发表于 10-31 06:35 2298次阅读
与你一起揭开LR寄存器的神秘面纱

总线接口作两种用途,为何就要用到锁存器

锁存器辨析所谓锁存器,就是输出端的状态不会随输入端的状态变化而变化,仅在有锁存信号时输入的状态被保存....

的头像 玩转单片机 发表于 10-31 06:04 3689次阅读
总线接口作两种用途,为何就要用到锁存器

数电模电的基础知识分享

以前,村里有个小伙叫“模电”,浓眉大眼,身高力壮,村里的大事小情都要找他。引得众多小mm纷纷拜倒在他....

的头像 贸泽电子设计圈 发表于 10-29 08:29 4751次阅读
数电模电的基础知识分享

模拟设计分析思路及硬件知识准备

:点击↑"电源联盟"订阅高可靠电源行业第一自媒体电源联盟---高可靠电源行业第一自媒体在这里有电源技....

的头像 电源联盟 发表于 10-27 08:43 3750次阅读
模拟设计分析思路及硬件知识准备

一起来看基尔霍夫定律在产品设计中的应用

沿电路任一闭合路径(回路或闭合结点序列)各段电压代数和等于零,意味着单位正电荷沿任一闭合路径移动时能....

的头像 电源联盟 发表于 10-27 08:34 5308次阅读
 一起来看基尔霍夫定律在产品设计中的应用

基于STM32系列MCU使用软件模拟I2C步骤

这样做的好处是可以突破硬件上的限制,例如芯片不具有硬件 I2C 模块,或者硬件 I2C 模块损坏,又....

的头像 EDN电子技术设计 发表于 10-26 10:39 5320次阅读
基于STM32系列MCU使用软件模拟I2C步骤

针对STM32设计,这8种GPIO配置不可忽视

最近在看数据手册的时候,发现在Cortex-M3里,对于GPIO的配置种类有8种之多:(1)GPIO....

的头像 贸泽电子设计圈 发表于 10-24 09:49 5058次阅读
针对STM32设计,这8种GPIO配置不可忽视