0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

用于生物组织-电子接口的水响应性自适应可拉伸电极

微流控 来源:微流控 2023-12-28 17:30 次阅读

中国科学院深圳先进技术研究院研究员李光林、刘志远团队,联合新加坡南洋理工大学教授陈晓东、高华建团队以及南京医科大学教授胡本慧团队,共同研发了一种能够快速大幅度收缩的柔性薄膜,并系统探讨了该薄膜在简化和加速植入程序领域的应用。这一创新设计为实现生物组织和电子设备之间的无缝集成提供了新的可能。相关研究近日以“Water-responsive supercontractile polymer films for bioelectronic interfaces”为题发表在Nature期刊上。

b6199f60-a559-11ee-8b88-92fbcf53809c.png

具有超收缩能力的水响应性自适应聚合物(WRAP)薄膜

柔性可拉伸电极是监测人体电生理信息的核心工具。由于生物组织柔软,形状和尺寸各不相同,柔性可拉伸电极与生物组织的接口无法像硬件电路集成那样标准化,因此亟须开发柔性电极与复杂生物组织的标准化快速集成方法。

研究团队从蜘蛛丝中汲取灵感,基于聚环氧乙烷和聚乙二醇-α-环糊精包合物,研发出了一种水响应性超收缩聚合物薄膜。该薄膜在室温条件下干燥、柔韧且稳定,润湿后能快速且大幅度地收缩,转变为柔性可拉伸的水凝胶薄膜。这种超收缩薄膜干燥且柔韧的特性有助于电子集成。基于这种薄膜构筑的自适应电极阵列大大简化了植入过程,在润湿后可灵活地包裹不同尺寸的神经、肌肉和心脏,并应用于体内神经刺激和电生理信号记录。

b633d18c-a559-11ee-8b88-92fbcf53809c.png

水响应性自适应聚合物(WRAP)薄膜的微观结构和超收缩机理

b64ac82e-a559-11ee-8b88-92fbcf53809c.png

作为植入式刺激和记录电极的水响应形状自适应电极阵列

研究表明,这种新型水响应性材料在塑造下一代生物组织-电子接口以及拓宽形状自适应材料的生物医学应用方面具有潜在作用。

论文信息: https://doi.org/10.1038/s41586-023-06732-y

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 薄膜
    +关注

    关注

    0

    文章

    240

    浏览量

    26341
  • 电极
    +关注

    关注

    5

    文章

    741

    浏览量

    26871
  • 硬件电路
    +关注

    关注

    39

    文章

    233

    浏览量

    28988

原文标题:用于生物组织-电子接口的水响应性自适应可拉伸电极

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    什么是自适应光学?自适应光学原理与方法的发展

    目前,世界上大型的望远镜系统都采用了自适应光学技术,自适应光学的出现为补偿动态波前扰动,提高光波质量提供了新的研究方向。 60多年来,自适应光学技术获得蓬勃发展,现已应用于天文学
    发表于 03-11 10:27 372次阅读

    艾为发布第三代自适应可编程SAR Sensor AW963xx系列

    上海艾为电子技术股份有限公司(简称“艾为”)正式推出其第三代自适应可编程SAR Sensor——AW963xx系列。该系列传感器采用了先进的自互容一体电容感测技术,并内置了自适应补偿引擎,具备卓越的感知精度和强大的环境
    的头像 发表于 02-27 14:12 235次阅读

    用于可穿戴和可植入生物电子学的可拉伸石墨烯-水凝胶界面

    可穿戴和可植入生物电子技术能够监测物理、化学以及电生理信号,在人机交互、医疗健康监测、脑机接口、慢性病管理以及药物释放系统等领域具有广泛应用前景。
    的头像 发表于 12-26 09:41 381次阅读
    <b class='flag-5'>用于</b>可穿戴和可植入<b class='flag-5'>生物电子</b>学的<b class='flag-5'>可拉伸</b>石墨烯-水凝胶界面

    理大研发液态金属微电极 具柔软、透气、可拉伸优点 可用于植入式生物电子装置

    (理大)的研究团队成功研发出一种独特的微电极,能适用于上述用途。此研究成果已于国际科学期刊《Science Advances》发表。 不同于传统电子产品,可穿戴或植入式电子装置的用料需
    的头像 发表于 12-12 09:08 208次阅读
    理大研发液态金属微<b class='flag-5'>电极</b> 具柔软、透气、<b class='flag-5'>可拉伸</b>优点 可<b class='flag-5'>用于</b>植入式<b class='flag-5'>生物电子</b>装置

    LabVIEW开发自适应降噪ANC

    LabVIEW开发自适应降噪ANC 在许多情况下,信号很嘈杂,必须消除噪声。自适应降噪(ANC)是可用于消除信号噪声的主要实时方法之一。可以使用LabVIEW自适应滤滤器工具包来设计A
    发表于 11-30 19:38

    可拉伸导电水凝胶用于应变传感研究获进展

    近日,广东省科学院化工研究所研究员曾炜团队联合五邑大学副教授温锦秀,在与微电子器件结合的可拉伸导电水凝胶用于应变传感研究方面取得新进展。相关研究论文发表于Journal of Materials Chemistry C。
    的头像 发表于 10-18 16:20 212次阅读
    <b class='flag-5'>可拉伸</b>导电水凝胶<b class='flag-5'>用于</b>应变传感研究获进展

    TriLite 与艾迈斯欧司朗合作开发 AR 智能眼镜显示屏,怀柔仪器传感器产业科创平台建设提速

    轻量化和优异适应性的电子器件能够与柔软、曲面、动态的生物体系紧密贴合,在人体健康监测和生物医疗领域中发挥越来越重要的作用。其中,柔性可拉伸
    的头像 发表于 09-14 18:01 687次阅读
    TriLite 与艾迈斯欧司朗合作开发 AR 智能眼镜显示屏,怀柔仪器传感器产业科创平台建设提速

    自适应控制试题

    自适应控制理论试题
    发表于 08-21 12:41

    自适应可伸缩纹理压缩开发人员指南

    自适应可伸缩纹理压缩(ASTC)是由Arm®和AMD开发的一种先进的有损纹理压缩技术。 本指南提供了有关如何有效使用ASTC来优化应用程序性能的信息。它涵盖以下主题: •什么是ASTC,为什么需要它
    发表于 08-10 07:58

    AMBA® 自适应流量配置文件

    流量配置文件是对接口的事务特性的定义。AMBA自适应交通Profile(ATP)是接口动态特性的规范。AMBA ATP包括交易的类型以及这些交易的时间特征。 流量配置文件的主要用途是描述系统中主组
    发表于 08-02 07:39

    液态金属基可拉伸封装材料的出色性能

        柔性可拉伸电子器件是指可通过自身变形而适应复杂外形并实现传感、供能、通讯等功能的电子元件,在健康管理、智慧医疗、人机交互等领域具有显著的潜力,备受科学界和工业界关注。通常,电学
    的头像 发表于 06-12 09:28 463次阅读
    液态金属基<b class='flag-5'>可拉伸</b>封装材料的出色性能

    力学所提出提高可拉伸电子器件弹性延展性的新策略

    可拉伸电子器件被广泛应用于健康监测、康复医疗、智能工业及航空航天等领域。
    的头像 发表于 06-11 11:32 521次阅读
    力学所提出提高<b class='flag-5'>可拉伸</b><b class='flag-5'>电子</b>器件弹性延展性的新策略

    可拉伸的超声换能器阵列实现深层组织3D成像

    利用超声波检查人体组织生物力学特性,可以帮助检测并管理病理生理状况,跟踪病变的演变,评估康复的进展。
    的头像 发表于 05-12 14:46 870次阅读
    <b class='flag-5'>可拉伸</b>的超声换能器阵列实现深层<b class='flag-5'>组织</b>3D成像

    受Kirigami启发的基于可拉伸有机薄膜晶体管的压力传感器

    在可穿戴健康监测、软体机器人和电子皮肤等应用中,柔性可拉伸电子器件与刚性器件相比具有许多优势。
    发表于 05-10 09:24 251次阅读
    受Kirigami启发的基于<b class='flag-5'>可拉伸</b>有机薄膜晶体管的压力传感器

    用于柔性瞬态电子的高度可拉伸的弹性体

    由于类橡胶弹性体在柔性可拉伸的可穿戴、可植入电子器件或相关研究领域取得了科学突破,因此,具有类似机械性能的可降解弹性体可能会在生物可吸收瞬态电子领域,甚至是未开发的领域中,带来类似的技
    的头像 发表于 05-05 14:32 907次阅读
    <b class='flag-5'>用于</b>柔性瞬态<b class='flag-5'>电子</b>的高度<b class='flag-5'>可拉伸</b>的弹性体