侵权投诉

开关电源MOS的8大损耗你都知道吗

KIA半导体 2021-05-18 09:15 次阅读

能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。绝大多数电源IC 的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。一般厂商会给出实际测量的结果,但我们只能对我们自己的数据担保。

7b958502-b4ed-11eb-bf61-12bb97331649.png

图1

图1 给出了一个SMPS 降压转换器电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS 损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET二极管),另外小部分损耗来自电感电容。但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。选择IC 时,需要考虑控制器的架构和内部元件,以期获得高效指标。例如,图1 采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。我们将在本文展开讨论这些措施带来的好处

图1. 降压转换器集成了低导通电阻的MOSFET,采用同步整流,效率曲线如图所示。

降压型SMPS

7bcf055c-b4ed-11eb-bf61-12bb97331649.png

图2

损耗是任何SMPS 架构都面临的问题,我们在此以图2 所示降压型(或buck)转换器为例进行讨论,图中标明各点的开关波形,用于后续计算。

降压转换器的主要功能是把一个较高的直流输入电压转换成较低的直流输出电压。为了达到这个要求,MOSFET 以固定频率(fS),在脉宽调制信号(PWM)的控制下进行开、关操作。当MOSFET 导通时,输入电压给电感和电容(L 和COUT)充电,通过它们把能量传递给负载。在此期间,电感电流线性上升,电流回路如图2 中的回路1 所示。

当MOSFET 断开时,输入电压断开与电感的连接,电感和输出电容为负载供电。电感电流线性下降,电流流过二极管,电流回路如图中的环路2 所示。MOSFET 的导通时间定义为PWM 信号的占空比(D)。D 把每个开关周期分成[D × tS]和[(1 - D) × tS]两部分,它们分别对应于MOSFET 的导通时间(环路1)和二极管的导通时间(环路2)。所有SMPS 拓扑(降压、反相等)都采用这种方式划分开关周期,实现电压转换。

对于降压转换电路,较大的占空比将向负载传输较多的能量,平均输出电压增加。相反,占空比较低时,平均输出电压也会降低。根据这个关系,可以得到以下理想情况下(不考虑二极管或MOSFET 的压降)降压型SMPS 的转换公式:

VOUT= D × VIN

IIN= D × IOUT

需要注意的是,任何SMPS 在一个开关周期内处于某个状态的时间越长,那么它在这个状态所造成的损耗也越大。对于降压型转换器,D 越低(相应的VOUT 越低),回路2 产生的损耗也大。

1、开关器件的损耗 MOSFET 传导损耗

图2 (以及其它绝大多数DC-DC 转换器拓扑)中的MOSFET 和二极管是造成功耗的主要因素。相关损耗主要包括两部分:传导损耗和开关损耗。

MOSFET 和二极管是开关元件,导通时电流流过回路。器件导通时,传导损耗分别由MOSFET 的导通电阻(RDS(ON))和二极管的正向导通电压决定。

MOSFET 的传导损耗(PCOND(MOSFET))近似等于导通电阻RDS(ON)、占空比(D)和导通时MOSFET 的平均电流(IMOSFET(AVG))的乘积。

PCOND(MOSFET)(使用平均电流) = IMOSFET(AVG)² × RDS(ON)× D

上式给出了SMPS 中MOSFET 传导损耗的近似值,但它只作为电路损耗的估算值,因为电流线性上升时所产生的功耗大于由平均电流计算得到的功耗。对于“峰值”电流,更准确的计算方法是对电流峰值和谷值(图3 中的IV 和IP)之间的电流波形的平方进行积分得到估算值。

7c389968-b4ed-11eb-bf61-12bb97331649.png

图3

图3. 典型的降压型转换器的MOSFET 电流波形,用于估算MOSFET 的传导损耗。

下式给出了更准确的估算损耗的方法,利用IP 和IV 之间电流波形I²的积分替代简单的I²项。

PCOND(MOSFET)= [(IP3- IV3)/3] × RDS(ON)× D

= [(IP3- IV3)/3] × RDS(ON)× VOUT/VIN

式中,IP 和IV 分别对应于电流波形的峰值和谷值,如图3 所示。MOSFET 电流从IV 线性上升到IP,例如:如果IV 为0.25A,IP 为1.75A,RDS(ON)为0.1Ω,VOUT为VIN/2 (D = 0.5),基于平均电流(1A)的计算结果为:

PCOND(MOSFET) (使用平均电流) = 12× 0.1 × 0.5 = 0.050W

利用波形积分进行更准确的计算:

PCOND(MOSFET)(使用电流波形积分进行计算) = [(1.753- 0.253)/3] × 0.1 × 0.5 = 0.089W

或近似为78%,高于按照平均电流计算得到的结果。对于峰均比较小的电流波形,两种计算结果的差别很小,利用平均电流计算即可满足要求.

2、开关动态损耗

由于开关损耗是由开关的非理想状态引起的,很难估算MOSFET 和二极管的开关损耗,器件从完全导通到完全关闭或从完全关闭到完全导通需要一定时间,在这个过程中会产生功率损耗。图4 所示MOSFET 的漏源电压(VDS)和漏源电流(IDS)的关系图可以很好地解释MOSFET 在过渡过程中的开关损耗,从上半部分波形可以看出,tSW(ON)和tSW(OFF)期间电压和电流发生瞬变,MOSFET 的电容进行充电、放电。

图4 所示,VDS降到最终导通状态(= ID × RDS(ON))之前,满负荷电流(ID)流过MOSFET。相反,关断时,VDS在MOSFET 电流下降到零值之前逐渐上升到关断状态的最终值。开关过程中,电压和电流的交叠部分即为造成开关损耗的来源,从图4 可以清楚地看到这一点。

7c5a8af0-b4ed-11eb-bf61-12bb97331649.png

开关损耗随着SMPS 频率的升高而增大,这一点很容易理解,随着开关频率提高(周期缩短),开关过渡时间所占比例增大,从而增大开关损耗。开关转换过程中,开关时间是占空比的二十分之一对于效率的影响要远远小于开关时间为占空比的十分之一的情况。由于开关损耗和频率有很大的关系,工作在高频时,开关损耗将成为主要的损耗因素。MOSFET 的开关损耗(PSW(MOSFET))可以按照图3 所示三角波进行估算,公式如下:

PSW(MOSFET)= 0.5 × VD × ID × (tSW(ON)+ tSW(OFF)) × fS

其中,VD 为MOSFET 关断期间的漏源电压,ID 是MOSFET 导通期间的沟道电流,tSW(ON)和tSW(OFF)是导通和关断时间。对于降压电路转换,VIN是MOSFET 关断时的电压,导通时的电流为IOUT。

为了验证MOSFET 的开关损耗和传导损耗,图5 给出了降压转换器中集成高端MOSFET 的典型波形:VDS和IDS。电路参数为:VIN= 10V、VOUT= 3.3V、IOUT= 500mA、RDS(ON)= 0.1Ω、fS= 1MHz、开关瞬变时间(tON+ tOFF)总计为38ns。

在图5 可以看出,开关变化不是瞬间完成的,电流和电压波形交叠部分导致功率损耗。MOSFET“导通”时(图2),流过电感的电流IDS 线性上升,与导通边沿相比,断开时的开关损耗更大。

利用上述近似计算法,MOSFET 的平均损耗可以由下式计算:

PT(MOSFET)= PCOND(MOSFET)+ PSW(MOSFET)

= [(I13- I03)/3] × RDS(ON)× VOUT/VIN+ 0.5 × VIN× IOUT× (tSW(ON)+ tSW(OFF)) × fS

= [(13- 03)/3] × 0.1 × 3.3/10 + 0.5 × 10 × 0.5 × (38 × 10-9) × 1 × 106

= 0.011 + 0.095 = 106mW

这一结果与图5 下方曲线测量得到的117.4mW 接近,注意:这种情况下,fS足够高,PSW(MOSFET)是功耗的主要因素。

7ca23792-b4ed-11eb-bf61-12bb97331649.png

图5

图5. 降压转换器高端MOSFET 的典型开关周期,输入10V、输出3.3V (输出电流500mA)。开关频率为1MHz,开关转换时间是38ns。

与MOSFET 相同,二极管也存在开关损耗。这个损耗很大程度上取决于二极管的反向恢复时间(tRR),二极管开关损耗发生在二极管从正向导通到反向截止的转换过程。

当反向电压加在二级管两端时,正向导通电流在二极管上产生的累积电荷需要释放,产生反向电流尖峰(IRR(PEAK)),极性与正向导通电流相反,从而造成V × I 功率损耗,因为反向恢复期内,反向电压和反向电流同时存在于二极管。图6 给出了二极管在反向恢复期间的PN 结示意图。

7cd11cd8-b4ed-11eb-bf61-12bb97331649.png

图6

图6. 二极管结反偏时,需要释放正向导通期间的累积电荷,产生峰值电流(IRR(PEAK))。

了解了二极管的反向恢复特性,可以由下式估算二极管的开关损耗(PSW(DIODE)):

PSW(DIODE)= 0.5 × VREVERSE× IRR(PEAK)× tRR2× fS

其中,VREVERSE是二极管的反向偏置电压,IRR(PEAK)是反向恢复电流的峰值,tRR2是从反向电流峰值IRR到恢复电流为正的时间。对于降压电路,当MOSFET 导通的时候,VIN为MOSFET 导通时二极管的反向偏置电压。

为了验证二极管损耗计算公式,图7 显示了典型的降压转换器中PN 结的开关波形,VIN= 10V、VOUT =3.3V,测得IRR(PEAK)= 250mA、IOUT= 500mA、fS= 1MHz、 tRR2= 28ns、VF = 0.9V。利用这些数值可以得到:

7d1f9cd2-b4ed-11eb-bf61-12bb97331649.png

该结果接近于图7 所示测量结果358.7mW。考虑到较大的VF和较长的二极管导通周期,tRR时间非常短,开关损耗(PSW(DIODE))在二极管损耗中占主导地位。

7ca23792-b4ed-11eb-bf61-12bb97331649.png

图7. 降压型转换器中PN 结开关二极管的开关波形,从10V 输入降至3.3V 输出,输出电流为500mA。其它参数包括:1MHz 的fS,tRR2为28ns,VF = 0.9V。

3、二极管传导损耗

MOSFET 的传导损耗与RDS(ON)成正比,二极管的传导损耗则在很大程度上取决于正向导通电压(VF)。二极管通常比MOSFET 损耗更大,二极管损耗与正向电流、VF 和导通时间成正比。由于MOSFET 断开时二极管导通,二极管的传导损耗(PCOND(DIODE))近似为:

PCOND(DIODE)= IDIODE(ON)× VF × (1 - D)

式中,IDIODE(ON)为二极管导通期间的平均电流。图2 所示,二极管导通期间的平均电流为IOUT,因此,对于降压型转换器,PCOND(DIODE)可以按照下式估算:

PCOND(DIODE)= IOUT× VF × (1 - VOUT/VIN)

与MOSFET 功耗计算不同,采用平均电流即可得到比较准确的功耗计算结果,因为二极管损耗与I 成正比,而不是I2。

显然,MOSFET 或二极管的导通时间越长,传导损耗也越大。对于降压型转换器,输出电压越低,二极管产生的功耗也越大,因为它处于导通状态的时间越长。

基于上述讨论,通过哪些途径可以降低电源的开关损耗呢?直接途径是:选择低导通电阻RDS(ON)、可快速切换的MOSFET;选择低导通压降VF、可快速恢复的二极管。

提高效率

7d5b374c-b4ed-11eb-bf61-12bb97331649.png

7d860abc-b4ed-11eb-bf61-12bb97331649.png

7da89a8c-b4ed-11eb-bf61-12bb97331649.png

7dc0ebaa-b4ed-11eb-bf61-12bb97331649.png

7de49e88-b4ed-11eb-bf61-12bb97331649.png

4、无源元件损耗

我们已经了解MOSFET 和二极管会导致SMPS 损耗。采用高品质的开关器件能够大大提升效率,但它们并不是唯一能够优化电源效率的元件。

图1 详细介绍了一个典型的降压型转换器IC 的基本电路。集成了两个同步整流MOSFET,低RDS(ON)MOSFET,效率很高。这个电路中,开关元件集成在IC 内部,已经为具体应用预先选择了元器件。然而,为了进一步提高效率,设计人员还需关注无源元件—外部电感和电容,了解它们对功耗的影响。

5、电感功耗阻性损耗

电感功耗包括线圈损耗和磁芯损耗两个基本因素,线圈损耗归结于线圈的直流电阻(DCR),磁芯损耗归结于电感的磁特性。

DCR 定义为以下电阻公式:

7e05cb12-b4ed-11eb-bf61-12bb97331649.png

式中,ρ 为线圈材料的电阻系数,l 为线圈长度,A 为线圈横截面积。

DCR 将随着线圈长度的增大而增大,随着线圈横截面积的增大而减小。可以利用该原则判断标准电感,确定所要求的不同电感值和尺寸。对一个固定的电感值,电感尺寸较小时,为了保持相同匝数必须减小线圈的横截面积,因此导致DCR 增大;对于给定的电感尺寸,小电感值通常对应于小的DCR,因为较少的线圈数减少了线圈长度,可以使用线径较粗的导线。

已知DCR 和平均电感电流(具体取决于SMPS 拓扑),电感的电阻损耗(PL(DCR))可以用下式估算:

PL(DCR)= LAVG2× DCR

这里,IL(AVG)是流过电感的平均直流电流。对于降压转换器,平均电感电流是直流输出电流。尽管DCR的大小直接影响电感电阻的功耗,该功耗与电感电流的平方成正比,因此,减小DCR 是必要的。

另外,还需要注意的是:利用电感的平均电流计算PL(DCR)(如上述公式)时,得到的结果略低于实际损耗,因为实际电感电流为三角波。本文前面介绍的MOSFET 传导损耗计算中,利用对电感电流的波形进行积分可以获得更准确的结果。更准确。当然也更复杂的计算公式如下:

PL(DCR)= (IP3- IV3)/3 × DCR

式中IP 和IV 为电感电流波形的峰值和谷值。

6、电容损耗

与理想的电容模型相反,电容元件的实际物理特性导致了几种损耗。电容在SMPS 电路中主要起稳压、滤除输入/输出噪声的作用(图1),电容的这些损耗降低了开关电源的效率。这些损耗主要表现在三个方面:等效串联电阻损耗、漏电流损耗和电介质损耗。

电容的阻性损耗显而易见。既然电流在每个开关周期流入、流出电容,电容固有的电阻(RC)将造成一定功耗。漏电流损耗是由于电容绝缘材料的电阻(RL)导致较小电流流过电容而产生的功率损耗。电介质损耗比较复杂,由于电容两端施加了交流电压,电容电场发生变化,从而使电介质分子极化造成功率损耗。

7e1f204e-b4ed-11eb-bf61-12bb97331649.png

图 9. 电容损耗模型一般简化为一个等效串联电阻(ESR)

所有三种损耗都体现在电容的典型损耗模型中(图9 左边部分),用电阻代表每项损耗。与电容储能相关的每项损耗的功率用功耗系数(DF)表示,或损耗角正切(δ)。每项损耗的DF 可以通过由电容阻抗的实部与虚部比得到,可以将每项损耗分别插入模型中。

为简化损耗模型,图9 中的接触电阻损耗、漏电流损耗和电介质损耗集中等为一个等效串联电阻(ESR)。ESR 定义为电容阻抗中消耗有功功率的部分。

推算电容阻抗模型、计算ESR (结果的实部)时,ESR 是频率的函数。这种相关性可以在下面简化的ESR等式中得到证明:

7e3e345c-b4ed-11eb-bf61-12bb97331649.png

式中,DFR、DFL 和DFD 是接触电阻、漏电流和电介质损耗的功耗系数。

利用这个等式,我们可以观察到随着信号频率的增加,漏电流损耗和电介质损耗都有所减小,直到接触电阻损耗从一个较高频点开始占主导地位。在该频点(式中没有包括该参数)以上,ESR 因为高频交流电流的趋肤效应趋于增大。

许多电容制造商提供ESR 曲线图表示ESR 与频率的关系。例如,TDK 为其大多数电容产品提供了ESR 曲线,参考这些与开关频率对应曲线图,得到ESR 值。

然而,如果没有ESR 曲线图,可以通过电容数据资料中的DF 规格粗略估算ESR。DF 是电容的整体DF (包括所有损耗),也可以按照下式估算ESR:

7e6165c6-b4ed-11eb-bf61-12bb97331649.png

无论采用哪种方法来得到ESR 值,直觉告诉我们,高ESR 会降低开关电源效率,既然输入和输出电容在每个开关周期通过ESR 充电、放电。这导致I2× RESR功率损耗。这个损耗(PCAP(ESR))可以按照下式计算:

PCAP(ESR)= ICAP(RMS)2×RESR

式中,ICAP(RMS)是流经电容的交流电流有效值RMS。对降压电路的输出电容,可以采用电感纹波电流的有效值RMS。输入滤波电容的RMS 电流的计算比较复杂,可以按照下式得到一个合理的估算值:

ICIN(RMS)= IOUT/VIN× [VOUT(VIN- VOUT)]1/2

显然,为减小电容功率损耗,应选择低ESR 电容,有助于SMPS 电源降低纹波电流。ESR 是产生输出电压纹波的主要原因,因此选择低ESR 的电容不仅仅单纯提高效率,还能得到其它好处。

一般来说,不同类型电介质的电容具有不同的ESR 等级。对于特定的容量和额定电压,铝电解电容钽电容就比陶瓷电容具有更高的ESR 值。聚酯和聚丙烯电容的ESR 值介于它们之间,但这些电容尺寸较大,SMPS 中很少使用。

对于给定类型的电容,较大容量、较低的fS能够提供较低的ESR。大尺寸电容通常也会降低ESR,但电解电容会带来较大的等效串联电感。陶瓷电容被视为比较好的折中选择,此外,电容值一定的条件下,较低的电容额定电压也有助于减小ESR。

7、磁芯损耗

磁芯损耗并不像传导损耗那样容易估算,很难估测。它由磁滞、涡流损耗组成,直接影响铁芯的交变磁通。SMPS 中,尽管平均直流电流流过电感,由于通过电感的开关电压的变化产生的纹波电流导致磁芯周期性的磁通变化。

磁滞损耗源于每个交流周期中磁芯偶极子的重新排列所消耗的功率,可以将其看作磁场极性变化时偶极子相互摩擦产生的“摩擦”损耗,正比于频率和磁通密度。

相反,涡流损耗则是磁芯中的时变磁通量引入的。由法拉第定律可知:交变磁通产生交变电压。因此,这个交变电压会产生局部电流,在磁芯电阻上产生I2R 损耗。

磁芯材料对磁芯损耗的影响很大。SMPS 电源中普遍使用的电感是铁粉磁芯,铁镍钼磁粉芯(MPP)的损耗最低,铁粉芯成本最低,但磁芯损耗较大。

磁芯损耗可以通过计算磁芯磁通密度(B)的最大变化量估算,然后查看电感或铁芯制造商提供的磁通密度和磁芯损耗(和频率)图表。峰值磁通密度可以通过几种方式计算,公式可以在电感数据资料中的磁芯损耗曲线中找到。

相应地,如果磁芯面积和线圈数已知,可利用下式估计峰值磁通:

7e793b56-b4ed-11eb-bf61-12bb97331649.png

这里,B 是峰值磁通密度(高斯),L 是线圈电感(亨),ΔI 是电感纹波电流峰峰值(安培),A 是磁芯横截面积(cm2),N 是线圈匝数。

随着互联网的普及,可以方便地从网上下载资料、搜索器件信息,一些制造商提供了交互式电感功耗的计算软件,帮助设计者估计功耗。使用这些工具能够快捷、准确地估计应用电路中的功率损耗。例如,Coilcraft 提供的在线电感磁芯损耗和铜耗计算公式,简单输入一些数据即可得到所选电感的磁芯损耗和铜耗。

8、集成功率开关

功率开关集成到IC 内部时可以省去繁琐的MOSFET 或二极管选择,而且使电路更加紧凑,由于降低了线路损耗和寄生效应,可以在一定程度上提高效率。根据功率等级和电压限制,可以把MOSFET、二极管(或同步整流MOSFET)集成到芯片内部。将开关集成到芯片内部的另一个好处是栅极驱动电路的尺寸已经针对片内MOSFET 进行了优化,因而无需将时间浪费在未知的分立MOSFET 上。

静态电流

电池供电设备特别关注IC 规格中的静态电流(IQ),它是维持电路工作所需的电流。重载情况下(大于十倍或百倍的静态电流IQ),IQ对效率的影响并不明显,因为负载电流远大于IQ,而随着负载电流的降低,效率有下降的趋势,因为IQ对应的功率占总功率的比例提高。这一点对于大多数时间处于休眠模式或其它低功耗模式的应用尤其重要,许多消费类产品即使在“关闭”状态下,也需要保持键盘扫描或其它功能的供电,这时,无疑需要选择具有极低IQ的电源。

电源架构对效率的提高

SMPS 的控制架构是影响开关电源效率的关键因素之一。这一点我们已经在同步整流架构中讨论过,由于采用低导通电阻的MOSFET 取代了功耗较大的开关二极管,可有效改善效率指标。

另一种重要的控制架构是针对轻载工作或较宽的负载范围设计的,即跳脉冲模式,也称为脉冲频率调制(PFM)。与单纯的PWM 开关操作(在重载和轻载时均采用固定的开关频率)不同,跳脉冲模式下转换器工作在跳跃的开关周期,可以节省不必要的开关操作,进而提高效率。

跳脉冲模式下,在一段较长时间内电感放电,将能量从电感传递给负载,以维持输出电压。当然,随着负载吸收电流,输出电压也会跌落。当电压跌落到设置门限时,将开启一个新的开关周期,为电感充电并补充输出电压。

需要注意的是跳脉冲模式会产生与负载相关的输出噪声,这些噪声由于分布在不同频率(与固定频率的PWM 控制架构不同),很难滤除。

先进的SMPS IC 会合理利用两者的优势:重载时采用恒定PWM 频率;轻载时采用跳脉冲模式以提高效率,图1 所示IC 即提供了这样的工作模式。

当负载增加到一个较高的有效值时,跳脉冲波形将转换到固定PWM,在标称负载下噪声很容易滤除。在整个工作范围内,器件根据需要选择跳脉冲模式和PWM 模式,保持整体的最高效率(图8)。

图8 中的曲线D、E、F 所示效率曲线在固定PWM 模式下,轻载时效率较低,但在重载时能够提供很高的转换效率(高达98%)。如果设置在轻载下保持固定PWM 工作模式,IC 将不会按照负载情况更改工作模式。这种情况下能够使纹波保持在固定频率,但浪费了一定功率。重载时,维持PWM 开关操作所需的额外功率很小,远远低于输出功率。另一方面,跳脉冲“空闲”模式下的效率曲线(图8 中的A、B、C)能够在轻载时保持在较高水平,因为开关只在负载需要时开启。对7V 输入曲线,在1mA 负载的空闲模式下能够获得高于60%的效率。

7e936f12-b4ed-11eb-bf61-12bb97331649.png

图8

图8. 降压转换器在PWM 和空闲(跳脉冲)模式下效率曲线,注意:轻载时,空闲模式下的效率高于PWM模式。

优化SMPS

开关电源因其高效率指标得到广泛应用,但其效率仍然受SMPS 电路的一些固有损耗的制约。设计开关电源时,需要仔细研究造成SMPS 损耗的来源,合理选择SMPS IC,从而充分利用器件的优势,为了在保持尽可能低的电路成本,甚至不增加电路成本的前提下获得高效的SMPS,工程师需要做出全面的选择

编辑:jq

原文标题:开关电源MOS的8大损耗,你都知道那些..

文章出处:【微信号:KIA半导体,微信公众号:KIA半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

PWM DAC相关资料

PWM DAC相关资料(ups电源技术发展动向)-PWM DAC相关资料              ....
发表于 09-18 15:45 6次 阅读
PWM DAC相关资料

基于MSP430的直流电机PWM调速控制器设计.

基于MSP430的直流电机PWM调速控制器设计.(电源技术交流群)-基于MSP430的直流电机PWM....
发表于 09-18 12:56 8次 阅读
基于MSP430的直流电机PWM调速控制器设计.

解析​国产GaN控制芯片在快充领域的优势与不足

电子发烧友网报道(文/李诚)上一期文章讲述了国外厂商主流的GaN快充主控芯片,其中安森美NCP134....
的头像 电子发烧友网 发表于 09-18 09:49 162次 阅读
解析​国产GaN控制芯片在快充领域的优势与不足

小功率18W AC/DC电源适配器该选什么样的IC?

01、样机介绍 该报告是基于能够适用于宽输入电压范围,输出功率18W,恒压输出的电源 适配器 样机,....
的头像 思睿达小妹妹 发表于 09-18 09:27 1283次 阅读
小功率18W AC/DC电源适配器该选什么样的IC?

怎样通过FPGA的数字PWM对电机进行控制呢

怎样通过FPGA的数字PWM对电机进行控制呢? 怎样去设计一种基于计数器的PWM波形发生器? ...
发表于 09-18 08:59 0次 阅读

双PWM补偿型单相交流稳压电源的设计

双PWM补偿型单相交流稳压电源的设计(开关电源技术教程张占松)-基于双PWM补偿型单相交流稳压电源的....
发表于 09-17 16:45 8次 阅读
双PWM补偿型单相交流稳压电源的设计

英飞凌赋能Flex Power Modules全新开关式电容中间总线转换器,为48V数据中心应用提供高功率密度

Flex Power Modules推出BMR310——一款非隔离式开关电容中间总线转换器(IBC)....
发表于 09-17 14:27 706次 阅读
英飞凌赋能Flex Power Modules全新开关式电容中间总线转换器,为48V数据中心应用提供高功率密度

一种基于PWM的电压输出DAC电路设计.

一种基于PWM的电压输出DAC电路设计.(核达中远通电源技术工资)-在电子和自动化技术的应用中,单片....
发表于 09-17 13:15 15次 阅读
一种基于PWM的电压输出DAC电路设计.

PWM模拟DAC的关键参数分析

PWM模拟DAC的关键参数分析(核达中远通电源技术)-摘要:PWM模拟DAC技术由于其价格便宜、技术....
发表于 09-17 13:00 8次 阅读
PWM模拟DAC的关键参数分析

升压式PWM开关电源控制芯片研究与设计

升压式PWM开关电源控制芯片研究与设计(通信电源技术是核心期刊吗)-开关电源具有体积小、效率高等特点....
发表于 09-17 12:31 15次 阅读
升压式PWM开关电源控制芯片研究与设计

使用PWM实现DAC

使用PWM实现DAC(现代电源技术基础pdf)-1 Introduction Many embedd....
发表于 09-17 12:02 7次 阅读
使用PWM实现DAC

什么是无刷电机PWM控制,它的特点有哪些

无刷电机属于自换流(方向变换),所以控制比较复杂。无刷电机控制要求了解电机转子的位置和机制。 闭环速....
的头像 Honlite电机 发表于 09-17 11:07 34次 阅读

PWM加移相控制双有源全桥双向DCDC变换器的研究

发表于 09-17 10:29 101次 阅读
PWM加移相控制双有源全桥双向DCDC变换器的研究

MOSFET驱动器的主要用途

简介目前 MOSFET 驱动器的主要用途之一是进行不同类型电机的驱动控制。此应用笔记对一些基本概念进行讨论以帮助用户选择适...
发表于 09-17 07:19 0次 阅读

关于PWM脉冲宽度调制与智能小车PWM直流电机调速的单片机实验

关于PWM脉冲宽度调制与智能小车PWM直流电机调速的单片机实验(现代电源技术王建辉答案)-关于PWM....
发表于 09-16 15:27 10次 阅读
关于PWM脉冲宽度调制与智能小车PWM直流电机调速的单片机实验

深入解读​国产高压SiC MOSFET及竞品分析

电子发烧友网报道(文/李诚)工业4.0时代及电动汽车快速的普及,工业电源、高压充电器对功率器件开关损....
的头像 电子发烧友网 发表于 09-16 11:05 162次 阅读

如何使用工业树莓派做ython的PWM控制

虹科工业树莓派 准备工作 硬件: 虹科工业树莓派1台 DIO模块1个 Windows系统电脑1台 L....
的头像 广州虹科电子科技有限公司 发表于 09-16 10:57 1078次 阅读
如何使用工业树莓派做ython的PWM控制

国产替代CR52177SC高性能原边检测控制的PWM开关方案帮你缓解芯片困局

CR52177SC集成了多种功能和保护特性,包括欠压锁定(UVLO),软启,过温保护(OTP),逐周....
的头像 思睿达小妹妹 发表于 09-16 10:47 2009次 阅读
国产替代CR52177SC高性能原边检测控制的PWM开关方案帮你缓解芯片困局

STM32F4 PWM-DAC实验例程

STM32F4 PWM-DAC实验例程(电源技术是sci吗)-STM32F4 PWM-DAC实验例程....
发表于 09-16 10:14 4次 阅读
STM32F4 PWM-DAC实验例程

什么是PWM

什么是PWM脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模...
发表于 09-16 08:46 0次 阅读

电机控制PWM引脚类型描述

引脚类型 描述 MC0A0-2 O 通道0-2,输出A MC0B0-2 O 通道0-2,输出B MCABORT I 低电平有效的快速中止MCI0-...
发表于 09-16 07:31 0次 阅读

通过PWM来控制直流电机的转速

在直流减速电机控制中,最常用的方法就是通过PWM来控制直流电机的转速。在控制小车走直线的过程中,需要两者的转速一置(如果...
发表于 09-16 06:58 0次 阅读

STM32F4系列定时器输出PWM频率计算步骤

1、STM32F4系列定时器输出PWM频率计算第一步,了解定时器的时钟多少: 我们知道AHP总线是168Mhz的频率,而APB1和...
发表于 09-16 06:39 0次 阅读

PWM是如何控制电机的

需要用的工具:STM32F401RE、L298N、直流电机软件:STM32CubeMX、keil5. 第一步,先打开STMCubeMX设置引脚,...
发表于 09-16 06:23 0次 阅读

直流电机PWM调速与控制设计报告

直流电机PWM调速与控制设计报告(电源技术版面费多少钱一页)-直流电机PWM调速与控制设计报告,有需....
发表于 09-15 15:34 34次 阅读
直流电机PWM调速与控制设计报告

直流电机PWM控制

直流电机PWM控制(电源技术属于哪个期刊)-直流电机PWM控制,有需要的可以参考!
发表于 09-15 15:29 40次 阅读
直流电机PWM控制

无刷直流电机工作原理及PWM调速

无刷直流电机工作原理及PWM调速(现代电源技术实验报告)-无刷直流电机工作原理及PWM调速,有需要的....
发表于 09-15 14:29 51次 阅读
无刷直流电机工作原理及PWM调速

PID控制PWM调节直流电机速度

PID控制PWM调节直流电机速度(安徽理士电源技术有限公司图片)-PID控制PWM调节直流电机速度,....
发表于 09-15 14:02 16次 阅读
PID控制PWM调节直流电机速度

基于dSPACE的直流电机PWM实验的设计

基于dSPACE的直流电机PWM实验的设计(核达中远通电源技术工资)-该文档为基于dSPACE的直流....
发表于 09-15 11:44 8次 阅读
基于dSPACE的直流电机PWM实验的设计

国产高压SiC MOSFET介绍及竞品分析

工业4.0时代及电动汽车快速的普及,工业电源、高压充电器对功率器件开关损耗、功率密度等性能也随之提高....
的头像 海明观察 发表于 09-15 09:34 1524次 阅读
国产高压SiC MOSFET介绍及竞品分析

高性能转换器芯片CS5268AN数据手册

Capstone CS5268AN是一款高性能TYPEC/DP1.4到HDMI2.0和VGA转换器,....
发表于 09-14 15:18 41次 阅读

DP1.4转HDMI2.0转换器芯片CS5263数据手册

DP1.4转HDMI2.0转换器芯片CS5263数据手册
发表于 09-14 15:16 20次 阅读

前TI高级副总裁加盟汇顶任非独立董事 张帆、谢兵和胡煜华的组合会擦出怎样的火花?

近日,汇顶科技发布《关于第三届董事会、监事会换届选举》公告,其中重点提及将公司第三届董事会将于202....
的头像 章鹰 发表于 09-14 13:31 1370次 阅读
前TI高级副总裁加盟汇顶任非独立董事 张帆、谢兵和胡煜华的组合会擦出怎样的火花?

MOSFET栅极应用电路分析汇总

发表于 09-14 10:16 66次 阅读
MOSFET栅极应用电路分析汇总

AMT49105的功能及应用描述

描述:AMT49105 专为需要 N 通道 MOSFET 栅极驱动器以满足高功率电感负载(如 BLDC 电机)的客户而设计。它非常适...
发表于 09-14 07:18 0次 阅读

四通道恒流LED驱动器IC NU514 规格书

四通道恒流LED驱动器IC NU514 规格书
发表于 09-12 09:34 23次 阅读

压力变送器硬件设计方案

流体压力变送器由采集压力波动的压力传感器、信号处理的A/D转换器、接收转换数据并处理的STM32电路....
发表于 09-11 09:15 71次 阅读

峰岹科技:获2021年度广东省工程技术研发中心认定

广东省科学技术厅发布广东省科学技术厅关于认定2021年度广东省工程技术研究中心的通知,峰岹科技被认定....
的头像 西西 发表于 09-10 10:53 1790次 阅读
峰岹科技:获2021年度广东省工程技术研发中心认定

高可靠性和稳定性的24W电源适配器方案 降低开关噪声简化EMI设计

本文将为大家带来的是思睿达24瓦适配器解决方案,该方案是基于一个能适用于宽输入电压范围,输出功率24....
的头像 思睿达小妹妹 发表于 09-10 10:29 3638次 阅读
高可靠性和稳定性的24W电源适配器方案 降低开关噪声简化EMI设计

Digi-Key Daily的一周新品推荐

本期Digi-Key Daily向大家推介两款产品——RECOM公司通过了2MOPP认证的RACM6....
的头像 得捷电子DigiKey 发表于 09-10 10:07 266次 阅读

多通道电压输出数模转换器AD5664参考代码

多通道电压输出数模转换器AD5664参考代码
发表于 09-09 16:24 67次 阅读

英飞凌和松下携手加速650V GaN功率器件的GaN技术开发

 对于许多设计来说,氮化镓(GaN)比硅具有根本的优势。与硅MOSFET相比,氮化镓HEMT具有出色....
发表于 09-08 18:03 459次 阅读

思睿达CR6889B方案能否替换XX11?测试数据分析

我们将为大家带来思睿达主推的CR6889B替换XX11对比 测试 报告。话不多说,我们先了解下思睿达....
的头像 思睿达小妹妹 发表于 09-08 16:18 2344次 阅读
思睿达CR6889B方案能否替换XX11?测试数据分析

思睿达主推EMI特性良好的CR6889B与XX8267是否可相互替换?对比测试报告

SOT23-6 封装的副边PWM 反激功率开关; ● 内置软启动,减小MOSFET 的应力,斜....
的头像 思睿达小妹妹 发表于 09-08 15:47 3159次 阅读
思睿达主推EMI特性良好的CR6889B与XX8267是否可相互替换?对比测试报告

UWB技术在汽车数字钥匙上的应用和方案

2021 年 4 月以来,随着苹果 AirTag 的发布,市场上又掀起了新一轮对 UWB 技术的关注....
的头像 电子发烧友网 发表于 09-08 14:47 402次 阅读

手势“芯”江湖,争占新风口

芯片短缺已逐渐成为全球性问题,根据高盛最新的研究报告表明,全球有多达169个行业在一定程度上受到了芯....
的头像 汇春科技 发表于 09-08 13:54 1386次 阅读

EG3525芯片用户手册

EG3525芯片用户手册
发表于 09-07 17:47 54次 阅读

EG3846芯片用户手册

EG3846芯片用户手册
发表于 09-07 17:28 27次 阅读

思睿达CR6248和XX2530究竟有啥不一样?两项对比测试看完一目了然

本文我们将为大家带来两项对比测试,分别是: 1、XX2530&CR6248_5V2.1....
的头像 思睿达小妹妹 发表于 09-07 16:26 1964次 阅读
思睿达CR6248和XX2530究竟有啥不一样?两项对比测试看完一目了然

模拟IC与80C51单片机的接口资料下载

模拟IC与80C51单片机的接口资料下载
发表于 09-07 15:46 33次 阅读

哪些PI InnoSwitch产品采用了PowiGaN技术

采用 PowiGaN 技术的 InnoSwitch3 无散热片反激式开关 IC,功率可达 100 W....
的头像 易络盟电子 发表于 09-07 11:21 234次 阅读

仿真看世界之SiC MOSFET单管的并联均流特性

SiC MOSFET并联的动态均流与IGBT类似,只是SiC MOSFET开关速度更快,对一些并联参....
发表于 09-06 11:06 1275次 阅读
仿真看世界之SiC MOSFET单管的并联均流特性

如何快速配置 SEPIC LED 驱动器演示板外设并生成代码

单端初级电感转换器(SEPIC)LED 驱动器演示板是一个硬件平台,旨在演示 Microchip 独....
的头像 Microchip微芯 发表于 09-04 14:28 2547次 阅读

SONY图像传感器IMX224的特点

SONY图像传感器IMX224即使在黑夜条件下,也能够实现高分辨率彩色图像的捕获,色度为0005lu....
发表于 09-03 11:01 44次 阅读

思睿达CR6234与XX5610设计方案对比测试

本文小编将为大家介绍的是思睿达主推的CR6234与XX5610测试报告,这两种产品究竟可否相互替换呢....
的头像 思睿达小妹妹 发表于 09-03 10:40 3135次 阅读
思睿达CR6234与XX5610设计方案对比测试

CCM+PFM混合电流模式PWM控制器方案测试 降低开关噪声 简化EMI设计

本文我们将对思睿达主推的CR6863B和XX2293B进行对比测试,看看思睿达主推的CR6863B是....
的头像 思睿达小妹妹 发表于 09-02 14:39 3745次 阅读
CCM+PFM混合电流模式PWM控制器方案测试 降低开关噪声 简化EMI设计

ZVS+PWM全桥三电平直流变换器

ZVS+PWM全桥三电平直流变换器(新型电源技术的理解)-ZVS+PWM全桥三电平直流变换器    ....
发表于 08-31 18:45 38次 阅读
ZVS+PWM全桥三电平直流变换器

基于FPGA的直流电机PWM控制的实现

基于FPGA的直流电机PWM控制的实现(电源技术参数)-该文档为基于FPGA的直流电机PWM控制的实....
发表于 08-31 13:13 37次 阅读
基于FPGA的直流电机PWM控制的实现

FX293X-100A-0010-L TE Connectivity FX29压力称重传感器

nectivity FX29压力称重传感器具有6V额定电源电压、3mA工作电流以及50MΩ绝缘电阻。FX29压力称重传感器设计紧凑,具有较高的超量程能力,采用不锈钢外壳。与以前的称重传感器设计相比,这些称重传感器具有更精确的尺寸控制和更佳的性能。FX29压力称重传感器非常适合用于医用输液泵、电动工具、机器人和制造设备。 特性 紧凑型设计 mV或放大的模拟输出 可选的I2C数字接口 较高的超量程能力 低功耗 坚固的Microfused传感元件 不锈钢外壳 多个称重量程 规范 电源电压:5.25V至6V 额定电流:3mA 输入电阻:2.4kΩ至3.6kΩ 带宽:1.0kHz 睡眠模式电流:5µA 储存温度范围:-40°C至+85°C 应用 医用输液泵 模拟和数字秤 健身和运动器材 有效负载称...
发表于 11-03 15:10 91次 阅读

MAX25014ATG/V+ MaximIntegrated MAX25014汽车级4通道背光驱动器

Integrated MAX25014汽车级4通道背光驱动器具有IC控制的脉宽调制 (PWM) 调光和混合调光功能,非常适合用于汽车仪表板和信息娱乐显示屏。集成电流驱动,每路可支持高达150mA LED灌电流。该器件采用2.5V至36.0V的宽输入电压范围,并能承受汽车负载突降事件。 内部电流模式直流-直流开关控制器可配置为升压或SEPIC拓扑,工作频率范围为400kHz至2.2MHz。集成的扩频有助于降低EMI。该器件采用自适应输出电压调节机制,可最大限度地降低LED电流驱动通路的功耗。 包含用于外部nMOSFET系列开关的控制,以降低背光关闭时的静态电流,并在发生故障时断开升压转换器。 MAX25014符合AEC-Q100标准,采用24引脚TQFN封装,设计用于在-40°C至+125°C温度范围内工作。 特性 宽电压范围运行 启动后工作电源电压低至2.5V 承受高达40V的负载突降 高度集成 完整的4通道解决方案,包括升压控制器 I2C控制,可最大限度地减少元件数量 ...
发表于 10-28 14:55 87次 阅读
MAX25014ATG/V+ MaximIntegrated MAX25014汽车级4通道背光驱动器

VIPER318LDTR STMicroelectronics VIPer31高压转换器

oelectronics VIPer31高压转换器在紧凑型SO-16封装中集成了800V抗雪崩、坚固型功率MOSFET,具有PWM电流模式控制。800V击穿支持较宽的输入电压范围,并可减小DRAIN缓冲电路的大小。VIPer31具有极低功耗,且可在轻负载时采用脉冲频率调制模式运行,因此符合极为严格的节能标准。OVP和UVP引脚分别提供过压和欠压保护,具有独立和可设置的干预阈值。UVP还可用作整个SMPS的禁用输入,具有超低剩余输入功耗。集成有HV启动、检测FET、误差放大器和带抖动的振荡器,因此只需极少元件即可设计完整的应用。 VIPer31高压转换器具有-40°C至+150°C宽工作温度范围,支持反激式、降压和降压-升压拓扑结构。 特性 800V抗雪崩、坚固型功率MOSFET,覆盖超宽VAC输入范围 嵌入式HV启动与传感FET 电流模式PWM控制器 850mA漏极电流限制保护 (OCP)  宽电源电压范围:4.5V至30V 空载时:...
发表于 10-28 14:54 67次 阅读
VIPER318LDTR STMicroelectronics VIPer31高压转换器

MAX17691AATC+ Maxim Integrated MAX17691 AMAX17691B 隔离式反激转换器

MAX17691A/MAX17691B隔离式反激转换器是一款高效无光集成式nMOSFET反激转换器,采用固定频率峰值电流模式控制。该器件在集成nMOSFET关断时间期间直接从一次侧反激波形中感测隔离式输出电压。无需二次侧误差放大器和光耦合器即可提供精确、隔离、稳压的输出电压,从而节省高达20% PCB空间(传统反激式转换器所需空间)。 MAX17691A/B具有低R DS(ON)值、76V、170mΩ集成nMOSFET一次开关,设计用于在4.2V至60V宽电源电压范围内工作。该器件的开关频率可设定为100kHz至350kHz。EN/UVLO支持用户在理想的输入电压情况下精确地开/关电源转换器。使用OVI引脚可实现输入过压保护(仅限MAX17691A)。软启动可限制启动时的浪涌电流。MAX17691A/B支持外部时钟同步,避免在具有多个转换器的系统中的输入总线上出现低频“波动”。该器件还具有可编程频率抖动,用于低EMI展频工作。 MAX17691A/B可对输出整流器二极管正向压降的变化进行温度补偿。MAX17691A具有内部补偿环路稳定性,而MAX17691B则具有外部环路补偿灵活性。MAX17691A/B具有强大的断...
发表于 10-28 09:55 59次 阅读
MAX17691AATC+ Maxim Integrated MAX17691 AMAX17691B 隔离式反激转换器

MAX20006EAFOB/VY+ Maxim Integrated MAX2000xE汽车用降压转换器

Integrated MAX2000xE汽车用降压转换器集成了高侧和低侧MOSFET。MAX2000xE可提供高达8A电流,输入电压范围为3.5V至36V,空载时静态电流仅为15µA。通过观察RESET信号,用户可以监控电压质量。掉电情况下,MAX2000xE转换器以98%占空比运行,保持正常工作。得益于以上特性,MAX2000xE汽车用降压转换器非常适合用于汽车应用。 Maxim MAX2000xE汽车用降压转换器提供5V、3.9V或3.3V固定输出电压,器件内部具有补偿功能,可实现出色的瞬态响应。开关频率选项为400kHz或2.1MHz。该器件具有15μA超低静态电流,可提供强制固定频率模式和跳跃模式。通过引脚可选 (SSEN) 扩频协助设计人员进行EMC管理。 MAX20004E/MAX20006E/MAX20008E采用小型3.5mm x 3.75mm 17引脚FC2QFN封装,仅需极少外部元件。 特性 多功能、小尺寸 VIN工作范围:3V至36V 跳跃模式下的静态电流为15µA 同步直流-直流转换器,具有集成式FET 开关频率:400kHz至2.1MHz ...
发表于 10-21 10:58 283次 阅读
MAX20006EAFOB/VY+ Maxim Integrated MAX2000xE汽车用降压转换器

STEVAL-ISA050V1 STEVAL-ISA050V1单片VR用于基于所述PM6641单片VR为芯片组和DDR2芯片组和DDR2 / 3演示板/ 3供应用于超移动PC(UMPC)应用

部为0.8V±1%的电压基准 2.7 V至5.5 V输入电压范围 快速响应,恒定频率,电流模式控制 三个独立,可调节, SMPS对于DDR2 / 3(VDDQ)和芯片组供应 S3-S5状态兼容DDR2 / 3部分 有源软端所有输出 为VDDQ可选跟踪放电 独立的电源良好信号 脉冲在轻负载跳过 可编程电流限制和软启动所有输出 锁存OVP,UVP保护 热保护 参考和终止电压(VTTREF和VTT )±2的.apk LDO为DDR2 / 3端点(VTT)与折返 远程VTT输出感测 在S3高阻VTT输出 ±15 mA低噪声DDR2 / 3缓冲基准(VTTREF) 在STEVAL-ISA050V1演示板是基于PM6641,这是一个单片电压调节器模块,具有内部功率MOSFET,专门设计来提供DDR2 /在超移动PC和房地产便携式系统3内存和芯片组。它集成了三个独立的,可调节的,恒定频率的降压转换器,一个±2的.apk低压降(LDO)线性调节器和±15 mA低噪声缓冲基准。每个调节器提供基本电压下(UV)和过电压(OV)的保护,可编程软启动和电流限制,有源软端的和跳脉冲在轻负载。...
发表于 05-21 05:05 136次 阅读

AEK-MOT-SM81M1 AEK-MOT-SM81M1根据该L99SM81V用于汽车应用的步进电机驱动器评估板

用于汽车应用L99SM81V可编程步进电机驱动器板的功能: 具有微步进和保持功能 BEMF监测失速检测 经由SPI可编程配置 5V内部线性电压调节器(输出上板连接器可用) 板反向电池保护用STD95N4F3 MOSFET,其可以具有两个被取代可选地安装二极管和一个跨接 输入工作电压范围从6 V至28 V 输出电流至1.35A 板尺寸:65毫米长×81毫米宽×11毫米最大元件高度 WEEE和RoHS标准 所有ST组分是合格汽车级 的AutoDevKit部分™主动 应用:汽车双极步进电动机 在AEK-MOT-SM81M1评估板设计用于驱动在微步进模式中的双极步进电机,与COI升电压监测失速检测。...
发表于 05-20 18:05 190次 阅读

ST-MOSFET-FINDER ST-MOSFET-FINDERSTPOWER MOSFET取景移动应用程序的平板电脑和智能手机

或产品号的产品搜索能力 技术数据表下载和离线咨询 访问主要产品规格(主要电气参数,产品一般说明,主要特点和市场地位) 对产品和数据表 能够通过社交媒体或通过电子邮件共享技术文档 适用于Android收藏节™和iOS™应用商店 ST-MOSFET-Finder是可用于Android™和iOS™的应用程序,它可以让你探索的ST功率MOSFET产品组合使用便携设备。您可以轻松地定义设备最适合使用参数搜索引擎应用程序。您还可以找到你的产品由于采用了高效的零件号的搜索引擎。...
发表于 05-20 17:05 191次 阅读

STEVAL-POE006V1 STEVAL-POE006V13.3V / 20A 有源钳位正激转换器 以太网供电(PoE)的IEEE 802.3bt标准的参考设计

805的PoE-PD接口的 特点: 系统在封装中集成一个双活性桥,热插拔MOSFET和PoE的PD 支持传统高功率,4对应用 100伏与0.2Ω总路径电阻N沟道MOSFET,以每个有源桥 标识哪些种PSE(标准或传统)它被连接到,并提供成功的符合IEEE 802.3af / AT / BT分类指示为T0,T1和T2信号的组合(漏极开路) 通过STBY,仿和RAUX控制信号智能操作模式选择的PM8804 PWM控制器的 QFN 56 8x8mm封装43个管脚和6个露出垫 特点: PWM峰值电流模式控制器 输入操作电压高达75伏 内部高电压启动调节器与20毫安能力 可编程固定频率高达1MHz 可设置的时间 软关闭(任选地禁用) 双1A PK ,低侧互补栅极驱动器 GATE2可以被关闭以降低功耗 80 %的最大占空比与内部斜率补偿 QFN 16 3x3mm的封装,带有裸垫 此参考设计表示3.3 V,20 A转换器解决方案非常适合各种应用,包括无线接入点,具有的PoE-PD接口和一个DC-DC有源钳位正激变换器提供。...
发表于 05-20 12:05 95次 阅读

STEVAL-ISA165V1 用于与STP120N4F6 LLC谐振转换器SRK2001自适应同步整流控制器

LLC谐振变换器的同步整流器,具有自适应的导通和关断 V CC 范围:4.5 V至32 V 最大频率:500kHz的 对于N沟道MOSFET双栅驱动器(STRD级驱动程序) SR MOSFET类型:STP120N4F6(40 N - 4.3MΩ)TO -220 符合RoHS 在STEVAL-ISA165V1是产品评估电路板,旨在演示SRK2001同步整流控制器的性能。所述SRK2001器具的控制方案特异于在使用的变压器与绕组的全波整流中间抽头次级LLC谐振转换器的次级侧同步整流。它提供了两个高电流栅极驱动输出(用于驱动N沟道功率MOSFET)。每个栅极驱动器被单独地控制和联锁逻辑电路防止两个同步整流器(SR)MOSFET同时导通。装置的操作是基于两者的导通和关断的同步整流MOSFET的自适应算法。在快速的负载转变或上述谐振操作期间,另外的关断机构设置的基础上,比较器ZCD_OFF触发非常快的MOSFET关断栅极驱动电路。该板包括两个SR的MOSFET(在一个TO-220封装),并且可以在一个现有的转换器,作为整流二极管的替代很容易地实现。...
发表于 05-20 12:05 99次 阅读

STEVAL-IPMM15B STEVAL-IPMM15B基于STIB1560DM2T-L SLLIMM第二系列MOSFET IPM 1500W的电机控制电源板

电压:125 - 400 VDC 额定功率:高达1500W的 允许的最大功率是关系到应用条件和冷却系统 额定电流:最多6 A 均方根 输入辅助电压:高达20 V DC 单或用于电流检测的三分流电阻(与感测网络) 电流检测两个选项:专用的运算放大器或通过MCU 过电流保护硬件 IPM的温度监测和保护 在STEVAL-IPMM15B是配备有SLLIMM(小低损耗智能模制模块)第二串联模块的小型电动机驱动电源板第二系列n沟道超结的MDmesh™DM2快速恢复二极管(STIB1560DM2T-L)。它提供了一种用于驱动高功率电机,用于宽范围的应用,如白色家电,空调机,压缩机,电动风扇,高端电动工具,并且通常为电机驱动器3相逆变器的负担得起的,易于使用的解决方案。...
发表于 05-20 10:05 137次 阅读

NCP81143 VR多相控制器

43多相降压解决方案针对具有用户可配置3/2/1相位的Intel VR12.5兼容CPU进行了优化。该控制器结合了真正的差分电压检测,差分电感DCR电流检测,输入电压前馈和自适应电压定位,为台式机和笔记本电脑应用提供精确调节的电源。该控制系统基于双边沿脉冲宽度调制(PWM)与DCR电流检测相结合,以降低的系统成本提供对动态负载事件的最快初始响应。它具有在轻负载运行期间脱落到单相的能力,并且可以在轻负载条件下自动调频,同时保持优异的瞬态性能。 NCP81143提供两个内部MOSFET驱动器,带有一个外部PWM信号。提供高性能操作误差放大器以简化系统的补偿。获得专利的动态参考注入无需在闭环瞬态响应和动态VID性能之间进行折衷,从而进一步简化了环路补偿。获得专利的总电流求和提供高精度的数字电流监控。 应用 终端产品 基于工业CPU的应用程序 信息娱乐,移动,自动化,医疗和安全 电路图、引脚图和封装图...
发表于 08-09 11:36 565次 阅读

NCP81231 降压控制器 USB供电和C型应用

31 USB供电(PD)控制器是一款针对USB-PD C型解决方案进行了优化的同步降压控制器。它们是扩展坞,车载充电器,台式机和显示器应用的理想选择。 NCP81231采用I2C接口,可与uC连接,以满足USB-PD时序,压摆率和电压要求。 NCP81231工作在4.5V至28V 特性 优势 I2C可配置性 允许电压曲线,转换速率控制,定时等 带驱动程序的同步降压控制器 提高效率和使用标准mosfet 符合USB-PD规范 支持usb-pd个人资料 过压和过流保护 应用 终端产品 USB Type C 网络配件 消费者 停靠站 车载充电器s 网络中心 桌面 电路图、引脚图和封装图...
发表于 07-29 19:02 475次 阅读

NCP81239 4开关降压 - 升压控制器 USB供电和C型应用

39 USB供电(PD)控制器是一种同步降压升压,经过优化,可将电池电压或适配器电压转换为笔记本电脑,平板电脑和台式机系统以及使用USB的许多其他消费类设备所需的电源轨PD标准和C型电缆。与USB PD或C型接口控制器配合使用时,NCP81239完全符合USB供电规范。 NCP81239专为需要动态控制压摆率限制输出电压的应用而设计,要求电压高于或低于输入电压。 NCP81239驱动4个NMOSFET开关,允许其降压或升压,并支持USB供电规范中指定的消费者和供应商角色交换功能,该功能适用​​于所有USB PD应用。 USB PD降压升压控制器的工作电源和负载范围为4.5 V至28 V. 特性 优势 4.5 V至28 V工作范围 各种应用的广泛操作范围 I2C接口 允许uC与设备连接以满足USB-PD电源要求 将频率从150 kHz切换到1200 kHz 优化效率和规模权衡 过渡期间的压摆率控制 允许轻松实施USB-PD规范 支持USB-PD,QC2.0和QC3.0配置文件 过电压和过流保护 应用 终端产品 消费者 计算 销售点 USB Type-C USB PD 桌面 集线器 扩展...
发表于 07-29 19:02 671次 阅读

ADP3211 同步降压控制器 7位 可编程 单相

1是一款高效的单相同步降压开关稳压控制器。凭借其集成驱动器,ADP3211经过优化,可将笔记本电池电压转换为高性能英特尔芯片组所需的电源电压。内部7位DAC用于直接从芯片组或CPU读取VID代码,并将GMCH渲染电压或CPU核心电压设置为0 V至1.5 V范围内的值。 特性 优势 单芯片解决方案。完全兼容英特尔®IMVP-6.5 CPU和GMCH芯片组电压调节器规格集成MOSFET驱动器。 提高效率。 输入电压范围为3.3V至22V。 提高效率。 最差±7mV -case差分感应核心电压误差超温。 提高效率。 自动节电模式可在轻负载运行期间最大限度地提高效率。 提高效率。 软瞬态控制可降低浪涌电流和音频噪声。 当前和音频缩减。 独立电流限制和负载线设置输入,以增加设计灵活性。 改进设计灵活性ity。 内置电源良好屏蔽支持电压识别(VID)OTF瞬变。 提高效率。 具有0V至1.5V输出的7位数字可编程DAC。 提高效率。 短路保护。 改进保护。 当前监听输出信号。 提高效率。 这是一款无铅设备。完全符合RoHS标准和32引...
发表于 07-29 19:02 459次 阅读

NCP81149 具有SVID接口的单相电压调节器 适用于计算应用

49是一款单相同步降压稳压器,集成了功率MOSFET,可为新一代计算CPU提供高效,紧凑的电源管理解决方案。该器件能够在带SVID接口的可调输出上提供高达14A TDC的输出电流。在高达1.2MHz的高开关频率下工作,允许采用小尺寸电感器和电容器,同时由于采用高性能功率MOSFET的集成解决方案而保持高效率。具有来自输入电源和输出电压的前馈的电流模式RPM控制确保在宽操作条件下的稳定操作。 NCP81149采用QFN48 6x6mm封装。 特性 优势 4.5V至25V输入电压范围 针对超极本和笔记本应用进行了优化 支持11.5W和15W ULT平台 符合英特尔VR12.6和VR12.6 +规格 使用SVID接口调节输出电压 可编程DVID Feed - 支持快速DVID的前进 集成栅极驱动器和功率MOSFET 小外形设计 500kHz~1.2MHz开关频率 降低输出滤波器尺寸和成本 Feedforward Ope输入电源电压和输出电压的比例 快线瞬态响应和DVID转换 过流,过压/欠压和热保护 防止故障 应用 终端产品 工业应用 超极本应用程序 笔记本应用程序 集成POL U...
发表于 07-29 19:02 291次 阅读

NCP81141 Vr12.6单相控制器

41单相降压解决方案针对Intel VR12.6兼容CPU进行了优化。该控制器结合了真正的差分电压检测,差分电感DCR电流检测,输入电压前馈和自适应电压定位,为台式机和笔记本电脑应用提供精确调节的电源。单相控制器采用DCR电流检测,以降低的系统成本提供对动态负载事件的最快初始响应.NCP81141集成了内部MOSFET驱动器,可提高系统效率。提供高性能操作误差放大器以简化系统的补偿。获得专利的动态参考注入无需在闭环瞬态响应和动态VID性能之间进行折衷,从而进一步简化了环路补偿。获得专利的总电流求和提供高精度的数字电流监控。 应用 终端产品 基于工业CPU的应用程序 信息娱乐,移动,自动化,医疗和安全 电路图、引脚图和封装图...
发表于 07-29 18:02 694次 阅读

NCP81147 低压同步降压控制器

47是一款单相解决方案,具有差分相电流检测,同步输入,远程接地节能操作和栅极驱动器,可提供精确调节的电源。自适应非重叠栅极驱动和省电操作电路为服务器,笔记本和台式机系统提供低开关损耗和高效率解决方案。提供高性能操作误差放大器以简化系统的补偿。 NCP81147还具有软启动序列,精确的过压和过流保护,用于电源轨的UVLO和热关断。 特性 优势 内部高性能运算放大器 简化系统补偿 集成MOSFET驱动器 节省空间并简化设计 热关机保护 确保稳健的设计 过压和过流保护 确保稳健设计 省电模式 在轻载操作期间最大限度地提高效率 支持5.0 V至19 V输入 5.0 V至12 V操作 芯片使能功能通过OSC引脚 保证启动进入预充电负载 内部软启动/停止 振荡器频率范围为100 kHz至1000 kHz OCP准确度,锁定前的四次重入时间 无损耗差分电感电流检测 内部高精度电流感应放大器 20ns内部栅极驱动器的自适应FET非重叠时间 Vout从0.8V到3.3 V(5V,12V VCC) 热能补偿电流监测 ...
发表于 07-29 18:02 571次 阅读

NCP5230 低压同步降压控制器

0是一款单相解决方案,具有差分相电流检测,同步输入,远程接地节能操作和栅极驱动器,可提供精确调节的电源。自适应非重叠栅极驱动和省电操作电路为服务器,笔记本和台式机系统提供低开关损耗和高效率解决方案。提供高性能操作误差放大器以简化系统的补偿。 NCP5230还具有软启动序列,精确的过压和过流保护,用于电源轨的UVLO和热关断。 特性 高性能误差放大器 >内部软启动/停止 0.5%内部电压精度,0.8 V基准电压 OCP精度,锁存前四次重入时间无损差分电感电流检测内部高精度电流检测放大器振荡器频率范围100 kHz 1000 kHz 20 ns自适应FET内部栅极驱动器非重叠时间 5.0 V至12 V操作支持1.5 V至19 V Vin Vout 0.8 V至3.3 V(具有12 VCC的5 V电压)通过OSC引脚实现芯片功能锁存过压保护(OVP)内部固定OCP阈值保证启动预充电负载 热补偿电流监控 Shutdow n保护集成MOSFET驱动器集成BOOST二极管,内部Rbst = 2.2 自动省电模式,最大限度地提高光效率负载运行同步功能远程地面传感这是一个无铅设备 应用 桌面和服务器系统 电路图、引脚图和封装图...
发表于 07-29 17:02 493次 阅读

NCP3030 同步PWM控制器

0是一款PWM器件,设计用于宽输入范围,能够产生低至0.6 V的输出电压.NCP3030提供集成栅极驱动器和内部设置的1.2 MHz(NCP3030A)或2.4 MHz( NCP3030B)振荡器。 NCP3030还具有外部补偿跨导误差放大器,内置固定软启动。保护功能包括无损耗电流限制和短路保护,输出过压保护,输出欠压保护和输入欠压锁定。 NCP3030目前采用SOIC-8封装。 特性 优势 输入电压4.7 V至28 V 从不同输入电压源调节的能力 0.8 V +/- 1.5%参考电压 能够实现低输出电压 1200 kHz操作(NCP3020B - 2400 kHz) 高频操作允许使用小尺寸电感器和电容器 > 1A驱动能力 能够驱动低Rdson高效MOSFET 电流限制和短路保护 高级保护功能 输出过压和欠压检测 高级保护功能 具有外部补偿的跨导放大器 能够利用所有陶瓷输入和输出电容器 集成升压二极管 减少支持组件数量和成本 受管制的软启动 已结束软启动期间的环路调节可防止任何尖峰或下垂 AEC-Q100和PPAP兼容(NCV3030) 适用于汽车应用 应用 终端产品 ...
发表于 07-29 17:02 321次 阅读
NCP3030 同步PWM控制器