0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

堆栈溢出技术从入门到精通

j4AI_wujianying 来源:fqj 2019-05-03 14:18 次阅读

虽然溢出在程序开发过程中不可完全避免,但溢出对系统的威胁是巨大的,由于系统的特殊性,溢出发生时攻击者可以利用其漏洞来获取系统的高级权限root,因此本文将详细介绍堆栈溢出技术……

在您开始了解堆栈溢出前,首先你应该了解win32汇编语言,熟悉寄存器的组成和功能。你必须有堆栈和存储分配方面的基础知识,有关这方面的计算机书籍很多,我将只是简单阐述原理,着重在应用。其次,你应该了解linux,本讲中我们的例子将在linux上开发。

1、首先复习一下基础知识。

从物理上讲,堆栈是就是一段连续分配的内存空间。在一个程序中,会声明各种变量。静态全局变量是位于数据段并且在程序开始运行的时候被加载。而程序的动态的局部变量则分配在堆栈里面。

从操作上来讲,堆栈是一个先入后出的队列。他的生长方向与内存的生长方向正好相反。我们规定内存的生长方向为向上,则栈的生长方向为向下。压栈的操作push=ESP-4,出栈的操作是pop=ESP+4.换句话说,堆栈中老的值,其内存地址,反而比新的值要大。请牢牢记住这一点,因为这是堆栈溢出的基本理论依据。

在一次函数调用中,堆栈中将被依次压入:参数,返回地址,EBP。如果函数有局部变量,接下来,就在堆栈中开辟相应的空间以构造变量。函数执行结束,这些局部变量的内容将被丢失。但是不被清除。在函数返回的时候,弹出EBP,恢复堆栈到函数调用的地址,弹出返回地址到EIP以继续执行程序。

C语言程序中,参数的压栈顺序是反向的。比如func(a,b,c)。在参数入栈的时候,是:先压c,再压b,最后a。在取参数的时候,由于栈的先入后出,先取栈顶的a,再取b,最后取c。这些是汇编语言的基础知识,用户在开始前必须要了解这些知识。

2、现在我们来看一看什么是堆栈溢出。

运行时的堆栈分配

堆栈溢出就是不顾堆栈中数据块大小,向该数据块写入了过多的数据,导致数据越界,结果覆盖了老的堆栈数据。

例如程序一:

#includeintmain(){charname[8];printf("Pleasetypeyourname:");gets(name);printf("Hello,%s!",name);return0;}


编译并且执行,我们输入ipxodi,就会输出Hello,ipxodi!。程序运行中,堆栈是怎么操作的呢?

在main函数开始运行的时候,堆栈里面将被依次放入返回地址,EBP。

我们用gcc -S 来获得汇编语言输出,可以看到main函数的开头部分对应如下语句:

pushl%ebpmovl%esp,%ebpsubl$8,%esp


首先他把EBP保存下来,,然后EBP等于现在的ESP,这样EBP就可以用来访问本函数的局部变量。之后ESP减8,就是堆栈向上增长8个字节,用来存放name[]数组。最后,main返回,弹出ret里的地址,赋值给EIP,CPU继续执行EIP所指向的指令。

堆栈溢出

现在我们再执行一次,输入ipxodiAAAAAAAAAAAAAAA,执行完gets(name)之后,由于我们输入的name字符串太长,name数组容纳不下,只好向内存顶部继续写‘A’。由于堆栈的生长方向与内存的生长方向相反,这些‘A’覆盖了堆栈的老的元素。 我们可以发现,EBP,ret都已经被‘A’覆盖了。在main返回的时候,就会把‘AAAA’的ASCII码:0x41414141作为返回地址,CPU会试图执行0x41414141处的指令,结果出现错误。这就是一次堆栈溢出。

3、如何利用堆栈溢出

我们已经制造了一次堆栈溢出。其原理可以概括为:由于字符串处理函数(gets,strcpy等等)没有对数组越界加以监视和限制,我们利用字符数组写越界,覆盖堆栈中的老元素的值,就可以修改返回地址。

在上面的例子中,这导致CPU去访问一个不存在的指令,结果出错。事实上,当堆栈溢出的时候,我们已经完全的控制了这个程序下一步的动作。如果我们用一个实际存在指令地址来覆盖这个返回地址,CPU就会转而执行我们的指令。

在UINX/linux系统中,我们的指令可以执行一个shell,这个shell将获得和被我们堆栈溢出的程序相同的权限。如果这个程序是setuid的,那么我们就可以获得root shell。下一讲将叙述如何书写一个shell code。

如何书写一个shell code

一:shellcode基本算法分析

在程序中,执行一个shell的程序是这样写的:

shellcode.c------------------------------------------------------------------------#includevoidmain(){char*name[2];name[0]="/bin/sh"name[1]=NULL;execve(name[0],name,NULL);}------------------------------------------------------------------------


execve函数将执行一个程序。他需要程序的名字地址作为第一个参数。一个内容为该程序的argv[i](argv[n-1]=0)的指针数组作为第二个参数,以及(char*) 0作为第三个参数。

我们来看以看execve的汇编代码:

[nkl10]$Content$nbsp;gcc-oshellcode-staticshellcode.c[nkl10]$Content$nbsp;gdbshellcode(gdb)disassemble__execveDumpofassemblercodeforfunction__execve:0x80002bc<__execve>:pushl%ebp;0x80002bd<__execve+1>:movl%esp,%ebp;上面是函数头。0x80002bf<__execve+3>:pushl%ebx;保存ebx0x80002c0<__execve+4>:movl$0xb,%eax;eax=0xb,eax指明第几号系统调用。0x80002c5<__execve+9>:movl0x8(%ebp),%ebx;ebp+8是第一个参数"/bin/sh"0x80002c8<__execve+12>:movl0xc(%ebp),%ecx;ebp+12是第二个参数name数组的地址0x80002cb<__execve+15>:movl0x10(%ebp),%edx;ebp+16是第三个参数空指针的地址。;name[2-1]内容为NULL,用来存放返回值。0x80002ce<__execve+18>:int$0x80;执行0xb号系统调用(execve)0x80002d0<__execve+20>:movl%eax,%edx;下面是返回值的处理就没有用了。0x80002d2<__execve+22>:testl%edx,%edx0x80002d4<__execve+24>:jnl0x80002e6<__execve+42>0x80002d6<__execve+26>:negl%edx0x80002d8<__execve+28>:pushl%edx0x80002d9<__execve+29>:call0x8001a34<__normal_errno_location>0x80002de<__execve+34>:popl%edx0x80002df<__execve+35>:movl%edx,(%eax)0x80002e1<__execve+37>:movl$0xffffffff,%eax0x80002e6<__execve+42>:popl%ebx0x80002e7<__execve+43>:movl%ebp,%esp0x80002e9<__execve+45>:popl%ebp0x80002ea<__execve+46>:ret0x80002eb<__execve+47>:nopEndofassemblerdump.


经过以上的分析,可以得到如下的精简指令算法:

movl$execve的系统调用号,%eaxmovl"bin/sh"的地址,%ebxmovlname数组的地址,%ecxmovlname[n-1]的地址,%edxint$0x80;执行系统调用(execve)


当execve执行成功后,程序shellcode就会退出,/bin/sh将作为子进程继续执行。可是,如果我们的execve执行失败,(比如没有/bin/sh这个文件),CPU就会继续执行后续的指令,结果不知道跑到哪里去了。所以必须再执行一个exit()系统调用,结束shellcode.c的执行。

我们来看以看exit(0)的汇编代码:

(gdb)disassemble_exitDumpofassemblercodeforfunction_exit:0x800034c<_exit>:pushl%ebp0x800034d<_exit+1>:movl%esp,%ebp0x800034f<_exit+3>:pushl%ebx0x8000350<_exit+4>:movl$0x1,%eax;1号系统调用0x8000355<_exit+9>:movl0x8(%ebp),%ebx;ebx为参数00x8000358<_exit+12>:int$0x80;引发系统调用0x800035a<_exit+14>:movl0xfffffffc(%ebp),%ebx0x800035d<_exit+17>:movl%ebp,%esp0x800035f<_exit+19>:popl%ebp0x8000360<_exit+20>:ret0x8000361<_exit+21>:nop0x8000362<_exit+22>:nop0x8000363<_exit+23>:nopEndofassemblerdump.


看来exit(0)〕的汇编代码更加简单:

movl$0x1,%eax;1号系统调用movl0,%ebx;ebx为exit的参数0int$0x80;引发系统调用


那么总结一下,合成的汇编代码为:

movl$execve的系统调用号,%eaxmovl"bin/sh"的地址,%ebxmovlname数组的地址,%ecxmovlname[n-1]的地址,%edxint$0x80;执行系统调用(execve)movl$0x1,%eax;1号系统调用movl0,%ebx;ebx为exit的参数0int$0x80;执行系统调用(exit)

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 堆栈溢出
    +关注

    关注

    0

    文章

    8

    浏览量

    7889

原文标题:堆栈溢出技术从入门到精通

文章出处:【微信号:wujianying_danpianji,微信公众号:单片机精讲吴鉴鹰】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    模拟电子技术入门精通

    模拟电子技术入门精通
    发表于 08-06 12:38

    NIOS设计入门精通

    NIOS设计入门精通
    发表于 08-06 12:45

    DVD入门精通

    DVD入门精通
    发表于 08-17 15:39

    Matlab经典教程——入门精通

    Matlab经典教程——入门精通
    发表于 08-19 09:56

    Ubuntu_Linux入门精通

    Ubuntu_Linux入门精通
    发表于 08-20 14:07

    开关电源设计入门精通

    开关电源设计入门精通
    发表于 09-01 05:00

    shell编程入门精通

    shell编程入门精通。。
    发表于 11-02 09:00

    Protel 99入门精通

    Protel 99入门精通
    发表于 11-28 21:19

    DSP入门精通全集

    DSP入门精通全集
    发表于 07-29 11:46

    单片机入门精通

    单片机入门精通
    发表于 12-12 14:53

    开关电源设计入门精通

    开关电源设计入门精通
    发表于 10-08 11:05

    入门精通吃透PID

    入门精通吃透PID
    发表于 09-25 10:57

    入门精通吃透PID

    入门精通吃透PID
    发表于 10-31 12:28

    开关电源设计入门精通

    开关电源设计入门精通
    发表于 03-02 17:50

    STM32入门精通

    STM32入门精通
    发表于 09-30 09:13