0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

教你如何使用Python搭一个Transformer

电子工程师 来源:fqj 2019-04-24 15:00 次阅读

与基于RNN的方法相比,Transformer 不需要循环,主要是由Attention 机制组成,因而可以充分利用python的高效线性代数函数库,大量节省训练时间。

可是,却经常听到有人抱怨,Transformer学过就忘,总是不得要领。

怎么办?那就自己搭一个Transformer吧!

教你如何使用Python搭一个Transformer

上图是谷歌提出的transformer 架构,其本质上是一个Encoder-Decoder的结构。把英文句子输入模型,模型会输出法文句子。

要搭建Transformer,我们必须要了解5个过程:

词向量层

位置编码

创建Masks

多头注意层(The Multi-Head Attention layer)

Feed Forward层

词向量

词向量是神经网络机器翻译(NMT)的标准训练方法,能够表达丰富的词义信息

在pytorch里很容易实现词向量:

class Embedder(nn.Module): def __init__(self, vocab_size, d_model): super().__init__() self.embed = nn.Embedding(vocab_size, d_model) def forward(self, x): return self.embed(x)

当每个单词进入后,代码就会查询和检索词向量。模型会把这些向量当作参数进行学习,并随着梯度下降的每次迭代而调整。

给单词赋予上下文语境:位置编程

模型理解一个句子有两个要素:一是单词的含义,二是单词在句中所处的位置。

每个单词的嵌入向量会学习单词的含义,所以我们需要输入一些信息,让神经网络知道单词在句中所处的位置。

Vasmari用下面的函数创建位置特异性常量来解决这类问题:

教你如何使用Python搭一个Transformer

这个常量是一个2D矩阵。Pos代表了句子的顺序,i代表了嵌入向量所处的维度位置。在pos/i矩阵中的每一个值都可以通过上面的算式计算出来。

教你如何使用Python搭一个Transformer

位置编码矩阵是一个常量,它的值可以用上面的算式计算出来。把常量嵌入矩阵,然后每个嵌入的单词会根据它所处的位置发生特定转变。

位置编辑器的代码如下所示:

class PositionalEncoder(nn.Module): def __init__(self, d_model, max_seq_len = 80): super().__init__() self.d_model = d_model # create constant 'pe' matrix with values dependant on # pos and i pe = torch.zeros(max_seq_len, d_model) for pos in range(max_seq_len): for i in range(0, d_model, 2): pe[pos, i] = \ math.sin(pos / (10000 ** ((2 * i)/d_model))) pe[pos, i + 1] = \ math.cos(pos / (10000 ** ((2 * (i + 1))/d_model))) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): # make embeddings relatively larger x = x * math.sqrt(self.d_model) #add constant to embedding seq_len = x.size(1) x = x + Variable(self.pe[:,:seq_len], \ requires_grad=False).cuda() return x

以上模块允许我们向嵌入向量添加位置编码(positional encoding),为模型架构提供信息。

在给词向量添加位置编码之前,我们要扩大词向量的数值,目的是让位置编码相对较小。这意味着向词向量添加位置编码时,词向量的原始含义不会丢失。

创建Masks

Masks在transformer模型中起重要作用,主要包括两个方面:

编码器和解码器中:当输入为padding,注意力会是0。

在解码器中:预测下一个单词,避免解码器偷偷看到后面的翻译内容。

输入端生成一个mask很简单:

batch = next(iter(train_iter))input_seq = batch.English.transpose(0,1)input_pad = EN_TEXT.vocab.stoi['']# creates mask with 0s wherever there is padding in the inputinput_msk = (input_seq != input_pad).unsqueeze(1)

同样的,Target_seq也可以生成一个mask,但是会额外增加一个步骤:

# create mask as beforetarget_seq = batch.French.transpose(0,1)target_pad = FR_TEXT.vocab.stoi['']target_msk = (target_seq != target_pad).unsqueeze(1)size = target_seq.size(1) # get seq_len for matrixnopeak_mask = np.triu(np.ones(1, size, size),k=1).astype('uint8')nopeak_mask = Variable(torch.from_numpy(nopeak_mask) == 0)target_msk = target_msk & nopeak_mask

目标语句(法语翻译内容)作为初始值输进解码器中。解码器通过编码器的全部输出,以及目前已翻译的单词来预测下一个单词。

因此,我们需要防止解码器偷看到还没预测的单词。为了达成这个目的,我们用到了nopeak_mask函数:

教你如何使用Python搭一个Transformer

当在注意力函数中应用mask,每一次预测都只会用到这个词之前的句子。

多头注意力

一旦我们有了词向量(带有位置编码)和masks,我们就可以开始构建模型层了。

下图是多头注意力的结构:

教你如何使用Python搭一个Transformer

多头注意力层,每一个输入都会分成多头(multiple heads),从而让网络同时“注意”每一个词向量的不同部分。

V,K和Q分别代表“key”、“value”和“query”,这些是注意力函数的相关术语,但我不觉得解释这些术语会对理解这个模型有任何帮助。

在编码器中,V、K和G将作为词向量(加上位置编码)的相同拷贝。它们具有维度Batch_size * seq_len * d_model.

在多头注意力中,我们把嵌入向量分进N个头中,它们就有了维度(batch_size * N * seq_len * (d_model / N).

我们定义最终维度 (d_model / N )为d_k。

让我们来看看解码器模块的代码:

class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout = 0.1): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model)

def forward(self, q, k, v, mask=None): bs = q.size(0) # perform linear operation and split into h heads k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) # transpose to get dimensions bs * h * sl * d_model k = k.transpose(1,2) q = q.transpose(1,2) v = v.transpose(1,2)# calculate attention using function we will define next scores = attention(q, k, v, self.d_k, mask, self.dropout) # concatenate heads and put through final linear layer concat = scores.transpose(1,2).contiguous()\ .view(bs, -1, self.d_model) output = self.out(concat) return output

计算注意力

教你如何使用Python搭一个Transformer

计算注意力的公式

教你如何使用Python搭一个Transformer

图解公式

这是另一个我们需要了解的公式,上面这幅图很好地解释了这个公式。

图中的每个箭头代表了公式的一部分。

首先,我们要用Q乘以K的转置函数(transpose),然后通过除以d_k的平方根来实现scaled函数。

方程中没有显示的一个步骤是masking。在执行Softmax之前,我们使用mask,减少输入填充(padding)的值。

另一个未显示的步骤是dropout,我们将在Softmax之后使用它。

最后一步是在目前为止的结果和V之间做点积(dot product)。

下面是注意力函数的代码:

def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1e9)scores = F.softmax(scores, dim=-1) if dropout is not None: scores = dropout(scores) output = torch.matmul(scores, v) return output

前馈网络

好了,如果你现在已经理解以上部分,我们就进入最后一步!

这一层由两个线性运算组成,两层中夹有relu和dropout 运算。

class FeedForward(nn.Module): def __init__(self, d_model, d_ff=2048, dropout = 0.1): super().__init__() # We set d_ff as a default to 2048 self.linear_1 = nn.Linear(d_model, d_ff) self.dropout = nn.Dropout(dropout) self.linear_2 = nn.Linear(d_ff, d_model) def forward(self, x): x = self.dropout(F.relu(self.linear_1(x))) x = self.linear_2(x) return x

最后一件事:归一化

在深度神经网络中,归一化是非常重要的。它可以防止层中值变化太多,这意味着模型训练速度更快,具有更好的泛化。

教你如何使用Python搭一个Transformer

我们在编码器/解码器的每一层之间归一化我们的结果,所以在构建我们的模型之前,让我们先定义这个函数:

class Norm(nn.Module): def __init__(self, d_model, eps = 1e-6): super().__init__() self.size = d_model # create two learnable parameters to calibrate normalisation self.alpha = nn.Parameter(torch.ones(self.size)) self.bias = nn.Parameter(torch.zeros(self.size)) self.eps = eps def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \ / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias return norm

把所有内容结合起来!

如果你已经清楚了上述相关细节,那么你就能理解Transformer模型啦。剩下的就是把一切都组装起来。

让我们再来看看整体架构,然后开始构建:

教你如何使用Python搭一个Transformer

最后一个变量:如果你仔细看图,你可以看到编码器和解码器旁边有一个“Nx”。实际上,上图中的编码器和解码器分别表示编码器的一层和解码器的一层。N是层数的变量。比如,如果N=6,数据经过6个编码器层(如上所示的结构),然后将这些输出传给解码器,解码器也由6个重复的解码器层组成。

现在,我们将使用上面模型中所示的结构构建编码器层和解码器层模块。在我们构建编码器和解码器时,我们可以决定层的数量。

# build an encoder layer with one multi-head attention layer and one # feed-forward layerclass EncoderLayer(nn.Module): def __init__(self, d_model, heads, dropout = 0.1): super().__init__() self.norm_1 = Norm(d_model) self.norm_2 = Norm(d_model) self.attn = MultiHeadAttention(heads, d_model) self.ff = FeedForward(d_model) self.dropout_1 = nn.Dropout(dropout) self.dropout_2 = nn.Dropout(dropout) def forward(self, x, mask): x2 = self.norm_1(x) x = x + self.dropout_1(self.attn(x2,x2,x2,mask)) x2 = self.norm_2(x) x = x + self.dropout_2(self.ff(x2)) return x # build a decoder layer with two multi-head attention layers and# one feed-forward layerclass DecoderLayer(nn.Module): def __init__(self, d_model, heads, dropout=0.1): super().__init__() self.norm_1 = Norm(d_model) self.norm_2 = Norm(d_model) self.norm_3 = Norm(d_model) self.dropout_1 = nn.Dropout(dropout) self.dropout_2 = nn.Dropout(dropout) self.dropout_3 = nn.Dropout(dropout) self.attn_1 = MultiHeadAttention(heads, d_model) self.attn_2 = MultiHeadAttention(heads, d_model) self.ff = FeedForward(d_model).cuda()def forward(self, x, e_outputs, src_mask, trg_mask): x2 = self.norm_1(x) x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask)) x2 = self.norm_2(x) x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs, src_mask)) x2 = self.norm_3(x) x = x + self.dropout_3(self.ff(x2)) return x# We can then build a convenient cloning function that can generate multiple layers:def get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)])

我们现在可以构建编码器和解码器了:

class Encoder(nn.Module): def __init__(self, vocab_size, d_model, N, heads): super().__init__() self.N = N self.embed = Embedder(vocab_size, d_model) self.pe = PositionalEncoder(d_model) self.layers = get_clones(EncoderLayer(d_model, heads), N) self.norm = Norm(d_model) def forward(self, src, mask): x = self.embed(src) x = self.pe(x) for i in range(N): x = self.layers[i](x, mask) return self.norm(x) class Decoder(nn.Module): def __init__(self, vocab_size, d_model, N, heads): super().__init__() self.N = N self.embed = Embedder(vocab_size, d_model) self.pe = PositionalEncoder(d_model) self.layers = get_clones(DecoderLayer(d_model, heads), N) self.norm = Norm(d_model) def forward(self, trg, e_outputs, src_mask, trg_mask): x = self.embed(trg) x = self.pe(x) for i in range(self.N): x = self.layers[i](x, e_outputs, src_mask, trg_mask) return self.norm(x)

Transformer模型构建完毕!

class Transformer(nn.Module): def __init__(self, src_vocab, trg_vocab, d_model, N, heads): super().__init__() self.encoder = Encoder(src_vocab, d_model, N, heads) self.decoder = Decoder(trg_vocab, d_model, N, heads) self.out = nn.Linear(d_model, trg_vocab) def forward(self, src, trg, src_mask, trg_mask): e_outputs = self.encoder(src, src_mask) d_output = self.decoder(trg, e_outputs, src_mask, trg_mask) output = self.out(d_output) return output# we don't perform softmax on the output as this will be handled# automatically by our loss function

训练模型

构建完transformer,接下来要做的是用EuroParl数据集进行训练。编码部分非常简单,但是要等两天,模型才会开始converge!

让我们先来定义一些参数:

d_model = 512heads = 8N = 6src_vocab = len(EN_TEXT.vocab)trg_vocab = len(FR_TEXT.vocab)model = Transformer(src_vocab, trg_vocab, d_model, N, heads)for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p)# this code is very important! It initialises the parameters with a# range of values that stops the signal fading or getting too big.# See this blog for a mathematical explanation.optim = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)

现在,我们可以开始训练了:

def train_model(epochs, print_every=100): model.train() start = time.time() temp = start total_loss = 0 for epoch in range(epochs): for i, batch in enumerate(train_iter): src = batch.English.transpose(0,1) trg = batch.French.transpose(0,1) # the French sentence we input has all words except # the last, as it is using each word to predict the next trg_input = trg[:, :-1] # the words we are trying to predict targets = trg[:, 1:].contiguous().view(-1) # create function to make masks using mask code above src_mask, trg_mask = create_masks(src, trg_input) preds = model(src, trg_input, src_mask, trg_mask) optim.zero_grad() loss = F.cross_entropy(preds.view(-1, preds.size(-1)), results, ignore_index=target_pad) loss.backward() optim.step() total_loss += loss.data[0] if (i + 1) % print_every == 0: loss_avg = total_loss / print_every print("time = %dm, epoch %d, iter = %d, loss = %.3f, %ds per %d iters" % ((time.time() - start) // 60, epoch + 1, i + 1, loss_avg, time.time() - temp, print_every)) total_loss = 0 temp = time.time()

教你如何使用Python搭一个Transformer

示例训练输出:经过几天的训练后,模型的损失函数收敛到了大约1.3。

测试模型

我们可以使用下面的函数来翻译句子。我们可以直接输入句子,或者输入自定义字符串。

翻译器通过运行一个循环来工作。我们对英语句子进行编码。把 token输进解码器,编码器输出。然后,解码器对第一个单词进行预测,使用 token将其加进解码器的输入。接着,重新运行循环,获取下一个单词预测,将其加入解码器的输入,直到 token完成翻译。

def translate(model, src, max_len = 80, custom_string=False): model.eval()if custom_sentence == True: src = tokenize_en(src) sentence=\ Variable(torch.LongTensor([[EN_TEXT.vocab.stoi[tok] for tok in sentence]])).cuda()src_mask = (src != input_pad).unsqueeze(-2) e_outputs = model.encoder(src, src_mask) outputs = torch.zeros(max_len).type_as(src.data) outputs[0] = torch.LongTensor([FR_TEXT.vocab.stoi['']])for i in range(1, max_len): trg_mask = np.triu(np.ones((1, i, i), k=1).astype('uint8') trg_mask= Variable(torch.from_numpy(trg_mask) == 0).cuda() out = model.out(model.decoder(outputs[:i].unsqueeze(0), e_outputs, src_mask, trg_mask)) out = F.softmax(out, dim=-1) val, ix = out[:, -1].data.topk(1) outputs[i] = ix[0][0] if ix[0][0] == FR_TEXT.vocab.stoi['']: breakreturn ' '.join( [FR_TEXT.vocab.itos[ix] for ix in outputs[:i]] )

Transformer模型的构建过程大致就是这样。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • python
    +关注

    关注

    51

    文章

    4675

    浏览量

    83466
  • 函数库
    +关注

    关注

    1

    文章

    82

    浏览量

    32345
  • Transformer
    +关注

    关注

    0

    文章

    130

    浏览量

    5898

原文标题:百闻不如一码!手把手教你用Python搭一个Transformer

文章出处:【微信号:BigDataDigest,微信公众号:大数据文摘】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    教你给系统加锁的小诀窍

    教你给系统加锁的小诀窍现在破解操作系统密码的方法太多了,所以就算给系统加密码也不是很保险,现在我教你的就相当于给你弄个“防盗门”(有点夸张^_^)  进入系统
    发表于 07-01 14:56

    ABBYY FineReader 和 ABBYY PDF Transformer+功能比对

    +是新的、全面的巧妙解决PDF文档的工具。两者都是和PDF打交道的工具,有什么相同点和不同点呢?下面小编就给大家比较了下ABBYY FineReader 12和ABBYY PDF
    发表于 09-01 10:45

    如何更改ABBYY PDF Transformer+界面语言

    在安装ABBYY PDF Transformer+时会让您选择界面语言。此语言将用于所有消息、对话框、按钮和菜单项。在特殊情况下,您可能需要在安装完成后更改界面语言以适应需求,方法其实很简单,本文
    发表于 10-11 16:13

    PDF Transformer+“调整图像分辨率”警告消息解决办法

    些小伙伴在使用ABBYY PDF Transformer+扫描识别文档时,会发出“调整图像分辨率”警告消息。扫描分辨率设置的过高或过低,都会对文本识别的质量产生不好的影响,那么,该怎么解决呢?别急
    发表于 10-13 14:17

    ABBYY PDF Transformer+两步骤使用复杂文字语言

    ABBYY PDF Transformer+让您可创建或转换希伯来语、意第绪语、日语、中文、泰语、韩语和阿拉伯语的文档。那么如何顺利使用这些复杂语言文字呢?小编教你两步骤轻松快速处理包含以下复杂语言
    发表于 10-16 10:17

    如何更改ABBYY PDF Transformer+旋转页面

    ;自动旋转全部页面——让程序自动选择页面的方向,并在必要时进行纠正。此外,您还可以通过单击页面窗格项部的两按钮之对图像进行旋转。想要了解关于ABBYY PDF Transformer+基础教程的更多内容,点击进入ABBYY中
    发表于 10-16 10:19

    详解ABBYY PDF Transformer+从文件创建PDF文档

    文件与PDF/A 兼容(M)。如果您正从图像或纯图像PDF中创建PDF文档,请确保选择了必要的图像处理选项。4. 单击打开。ABBYY PDF Transformer+将从所选文件中创建PDF文档
    发表于 10-17 14:13

    详解ABBYY PDF Transformer+文档保护之密码安全

    本帖最后由 DW小朋友 于 2017-10-23 13:47 编辑 之前教你通过ABBYY PDF Transformer+保护PDF文档(详细复制链接abbyychina.com
    发表于 10-23 13:45

    ABBYY PDF Transformer+快捷键教程

    ABBYY PDF Transformer+提供了系列的操作快捷键,恰当的运用快捷键能够很好的帮助你节约时间,提高效率。文本下面介绍了ABBYY PDF Transformer+快捷键的具体指令
    发表于 10-26 11:33

    详解Python虚拟环境搭建

    手把手教你搭建Python虚拟环境,还不会的同学收藏学习哦!
    发表于 03-30 13:36

    免费的python教程分享

    最近找到了免费的python教程,两周学会了python开发【内附学习视频】
    发表于 07-13 16:17

    高焕堂老师教你搭建Java与Python开发环境

    AS(Android Studio)里藉由Gradle来引入的套件(插件)。它可以帮助我们实践Java与Python的混合编程。甚至可以全部使用Python来开发
    发表于 11-24 15:19

    搭建python开发环境_汽车怎么电 精选资料推荐

    汽车怎么电?1、取出红色(正极)电线,将其中端接到自己车辆蓄电池的正极接线柱上,另端接到其他车辆蓄电池正极或单独蓄电池正极端。2、取出黑色(负极)
    发表于 08-31 08:12

    还在单身的你 Python教你如何脱单

    今天,不是给大家发对象,只教大家方法。今天教大家怎么用 Python 给心动的人每天定时发早安或者晚安。
    的头像 发表于 05-05 15:12 1941次阅读

    教你7个Python判断字符串是否包含子串的方法

    教你7个Python判断字符串是否包含子串的方法
    的头像 发表于 08-17 10:52 4776次阅读
    <b class='flag-5'>教你</b>7个<b class='flag-5'>Python</b>判断字符串是否包含子串的方法