0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习笔记:冗余的数据对特征量进行降维

lviY_AI_shequ 来源:未知 作者:李倩 2018-04-30 17:12 次阅读

如果我们有许多冗余的数据,我们可能需要对特征量进行降维(Dimensionality Reduction)。

我们可以找到两个非常相关的特征量,可视化,然后用一条新的直线来准确的描述这两个特征量。例如图10-1所示,x1和x2是两个单位不同本质相同的特征量,我们可以对其降维。

图10-1 一个2维到1维的例子

又如图10-2所示的3维到2维的例子,通过对x1,x2,x3的可视化,发现虽然样本处于3维空间,但是他们大多数都分布在同一个平面中,所以我们可以通过投影,将3维降为2维。

图10-2 一个3维到2维的例子

降维的好处很明显,它不仅可以数据减少对内存的占用,而且还可以加快学习算法的执行。

注意,降维只是减小特征量的个数(即n)而不是减小训练集的个数(即m)。

10.1.2 Motivation two: Visualization

我们可以知道,但特征量维数大于3时,我们几乎不能对数据进行可视化。所以,有时为了对数据进行可视化,我们需要对其进行降维。我们可以找到2个或3个具有代表性的特征量,他们(大致)可以概括其他的特征量。

例如,描述一个国家有很多特征量,比如GDP,人均GDP,人均寿命,平均家庭收入等等。想要研究国家的经济情况并进行可视化,我们可以选出两个具有代表性的特征量如GDP和人均GDP,然后对数据进行可视化。如图10-3所示。

图10-3 一个可视化的例子

10.2 Principal Component Analysis

主成分分析(Principal Component Analysis : PCA)是最常用的降维算法。

10.2.1 Problem formulation

首先我们思考如下问题,对于正交属性空间(对2维空间即为直角坐标系)中的样本点,如何用一个超平面(直线/平面的高维推广)对所有样本进行恰当的表达?

事实上,若存在这样的超平面,那么它大概应具有这样的性质:

最近重构性: 样本点到这个超平面的距离都足够近;

最大可分性:样本点在这个超平面上的投影能尽可能分开。

下面我们以3维降到2维为例,来试着理解为什么需要这两种性质。图10-4给出了样本在3维空间的分布情况,其中图(2)是图(1)旋转调整后的结果。在10.1节我们默认以红色线所画平面(不妨称之为平面s1)为2维平面进行投影(降维),投影结果为图10-5的(1)所示,这样似乎还不错。那为什么不用蓝色线所画平面(不妨称之为平面s2)进行投影呢? 可以想象,用s2投影的结果将如图10-5的(2)所示。

图10-4 样本在3维正交空间的分布

图10-5 样本投影在2维平面后的结果

由图10-4可以很明显的看出,对当前样本而言,s1平面比s2平面的最近重构性要好(样本离平面的距离更近);由图10-5可以很明显的看出,对当前样本而言,s1平面比s2平面的最大可分性要好(样本点更分散)。不难理解,如果选择s2平面进行投影降维,我们会丢失更多(相当多)的特征量信息,因为它的投影结果甚至可以在转化为1维。而在s1平面上的投影包含更多的信息(丢失的更少)。

这样是否就是说我们从3维降到1维一定会丢失相当多的信息呢? 其实也不一定,试想,如果平面s1投影结果和平面s2的类似,那么我们可以推断这3个特征量本质上的含义大致相同。所以即使直接从3维到1维也不会丢失较多的信息。这里也反映了我们需要知道如何选择到底降到几维会比较好(在10.2.3节中讨论)。

让我们高兴的是,上面的例子也说明了最近重构性和最大可分性可以同时满足。更让人兴奋的是,分别以最近重构性和最大可分性为目标,能够得到PCA的两种等价推导

一般的,将特征量从n维降到k维:

以最近重构性为目标,PCA的目标是找到k个向量,将所有样本投影到这k个向量构成的超平面,使得投影的距离最小(或者说投影误差projection error最小)。

以最大可分性为目标,PCA的目标是找到k个向量,将所有样本投影到这k个向量构成的超平面,使得样本点的投影能够尽可能的分开,也就是使投影后的样本点方差最大化。

注意: PCA和线性回归是不同的,如图10-6所示,线性回归是以平方误差和(SSE)最小为目标,参见1.2.4节;而PCA是使投影(二维即垂直)距离最小;PCA与标记或者预测值完全无关,而线性回归是为了预测y的值。

图10-6 PCA不是线性回归

分别基于上述两种目标的具体推导过程参见周志华老师的《机器学习》P230。从方差的角度推导参见李宏毅老师《机器学习》课程Unsupervised Learning: Principle Component Analysis(http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/PCA.mp4)。

两种等价的推导结论是:对协方差矩阵进行特征值分解,将求得的特征值进行降序排序,再取前k个特征值对应的特征向量构成。

其中

10.2.2 Principal Component Analysis Algorithm

基于上一节给出的结论,下面给出PCA算法。

输入:训练集:

过程:

数据预处理:对所有样本进行中心化(即使得样本和为0)

计算样本的协方差矩阵(Sigma)

matlab中具体实现如下,其中X为m*n的矩阵:

Sigma = (1/m) * X'* X;

对2中求得的协方差矩阵Sigma进行特征值分解

在实践中通常对协方差矩阵进行奇异值分解代替特征值分解。在matlab中实现如下:

[U, S, V] = svd(Sigma); (svd即为matlab中奇异值分解的内置函数)

取最大的k个特征值所对应的特征向量

在matlab具体实现时,Ureduce =

经过了上述4步得到了投影矩阵Ureduce,利用Ureduce就可以得到投影后的样本值

下面总结在matlab中实现PCA的全部算法(假设数据已被中心化)

Sigma = (1/m) * X' * X; % compute the covariance matrix

[U,S,V] = svd(Sigma); % compute our projected directions

Ureduce = U(:,1:k); % take the first k directions

Z = Ureduce' * X; % compute the projected data points

10.2.3 Choosing the Number of Principal Components

如何选择k(又称为主成分的个数)的值?

首先,试想我们可以使用PCA来压缩数据,我们应该如何解压?或者说如何回到原本的样本值?事实上我们可以利用下列等式计算出原始数据的近似值Xapprox:

Xapprox = Z * Ureduce (m*n = m*k * k*n )

自然的,还原的数据Xapprox越接近原始数据X说明PCA误差越小,基于这点,下面给出选择k的一种方法:

结合PCA算法,选择K的算法总结如下:

这个算法效率特别低。在实际应用中,我们只需利用svd()函数,如下:

10.2.4 Advice for Applying PCA

PCA通常用来加快监督学习算法。

PCA应该只是通过训练集的特征量来获取投影矩阵Ureduce,而不是交叉检验集或测试集。但是获取到Ureduce之后可以应用在交叉检验集和测试集。

避免使用PCA来防止过拟合,PCA只是对特征量X进行降维,并没有考虑Y的值;正则化是防止过拟合的有效方法。

不应该在项目一开始就使用PCA: 花大量时间来选择k值,很可能当前项目并不需要使用PCA来降维。同时,PCA将特征量从n维降到k维,一定会丢失一些信息。

仅仅在我们需要用PCA的时候使用PCA: 降维丢失的信息可能在一定程度上是噪声,使用PCA可以起到一定的去噪效果。

PCA通常用来压缩数据以加快算法,减少内存使用或磁盘占用,或者用于可视化(k=2, 3)。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4455

    浏览量

    90751
  • 机器学习
    +关注

    关注

    66

    文章

    8122

    浏览量

    130556

原文标题:Stanford机器学习笔记-10. 降维(Dimensionality Reduction)

文章出处:【微信号:AI_shequ,微信公众号:人工智能爱好者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    【下载】《机器学习》+《机器学习实战》

    方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征
    发表于 06-01 15:49

    常用python机器学习库盘点

    现在人工智能非常火爆,机器学习应该算是人工智能里面的一个子领域,而其中有一块是对文本进行分析,对数据进行深入的挖掘提取一些
    发表于 05-10 15:20

    如何选择机器学习的各种方法

    都没有标签,你可以选择花钱请人来标注你的数据,或者使用无监督学习的方法。首先你可以考虑是否要对数据进行
    发表于 03-07 20:18

    吴恩达机器学习笔记分享

    【吴恩达机器学习笔记】第八章:正则化
    发表于 05-25 08:49

    机器学习基石笔记

    3)机器学习基石笔记 Lecture3:Types of Learning
    发表于 05-26 14:53

    机器学习基石笔记分享

    机器学习基石笔记01
    发表于 06-03 08:14

    吴恩达机器学习笔记分享

    吴恩达机器学习笔记 —— 1 绪论:初识机器学习
    发表于 06-05 17:42

    机器学习笔记之BP推导

    机器学习笔记:BP推导
    发表于 06-15 17:11

    常见的特征选择方法大致可以分为哪几类呢

    1. 前言  从给定的特征集合中选择出相关特征子集的过程,称为“特征选择”。特征选择是一个重要的数据预处理过程,:减少
    发表于 12-20 06:00

    机器学习中的特征选择的5点详细资料概述

    特征选择是一个重要的“数据预处理” (data preprocessing) 过程,在现实机器学习任务中,获得数据之后通常先
    的头像 发表于 06-18 17:24 6738次阅读

    机器学习特征工程的五个方面优点

    特征工程是用数学转换的方法将原始输入数据转换为用于机器学习模型的新特征特征工程提高了
    的头像 发表于 03-15 16:57 3636次阅读

    基于最大信息系数与冗余分摊策略的特征选择方法

    特征选择是机器学习的关键环节,通常采用最小冗余最大相关法进行特征选择,但该方法存在相关性测度与
    发表于 03-26 15:27 13次下载
    基于最大信息系数与<b class='flag-5'>冗余</b>分摊策略的<b class='flag-5'>特征</b>选择方法

    机器学习算法学习特征工程1

    特征工程是机器学习过程中的关键步骤,涉及将原始数据转换为机器学习算法可以有效使用的格式。在本篇博
    的头像 发表于 04-19 11:38 551次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>算法<b class='flag-5'>学习</b>之<b class='flag-5'>特征</b>工程1

    机器学习算法学习特征工程2

    特征工程是机器学习过程中的关键步骤,涉及将原始数据转换为机器学习算法可以有效使用的格式。在本篇博
    的头像 发表于 04-19 11:38 590次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>算法<b class='flag-5'>学习</b>之<b class='flag-5'>特征</b>工程2

    机器学习算法学习特征工程3

    特征工程是机器学习过程中的关键步骤,涉及将原始数据转换为机器学习算法可以有效使用的格式。在本篇博
    的头像 发表于 04-19 11:38 737次阅读
    <b class='flag-5'>机器</b><b class='flag-5'>学习</b>算法<b class='flag-5'>学习</b>之<b class='flag-5'>特征</b>工程3