侵权投诉

数字通信协议中,什么是I2C和SPI总线协议?

玩转单片机 2017-11-12 09:28 次阅读

作者:ce123 来源:http://blog.csdn.net/ce123_zhouwei/article/details/6878547

本文已获作者授权转载!

现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市场需求制定了这两种标准通信协议。

为了节省微控制器的引脚和和额外的逻辑芯片,使印刷电路板更简单,成本更低,位于荷兰的Philips实验室开发了 ‘Inter-Integrated Circuit’,IIC 或 IIC ,一种只使用二根线接连所有外围芯片的总线协议。最初的标准定义总线速度为100kbps。经历几次修订,主要是1995年的400kbps,1998的3.4Mbps。

有迹象表明,SPI总线首次推出是在1979年,Motorola公司将SPI总线集成在他们第一支改自68000微处理器的微控制器芯片上。SPI总线是微控制器四线的外部总线(相对于内部总线)。与IIC不同,SPI没有明文标准,只是一种事实标准,对通信操作的实现只作一般的抽象描述,芯片厂商与驱动开发者通过data sheets和application notes沟通实现上的细节。

SPI

对于有经验的数字电子工程师来说,用SPI互联两支数字设备是相当直观的。SPI是种四根信号线协议(如图):

SCLK: Serial Clock (output from master);

MOSI; SIMO: Master Output, Slave Input(output from master);

MISO; SOMI: Master Input, Slave Output(output from slave);

SS: Slave Select (active low, outputfrom master).

SPI是[单主设备( single-master )]通信协议,这意味着总线中的只有一支中心设备能发起通信。当SPI主设备想读/写[从设备]时,它首先拉低[从设备]对应的SS线(SS是低电平有效),接着开始发送工作脉冲到时钟线上,在相应的脉冲时间上,[主设备]把信号发到MOSI实现“写”,同时可对MISO采样而实现“读”,如下图:

SPI有四种操作模式——模式0、模式1、模式2和模式3,它们的区别是定义了在时钟脉冲的哪条边沿转换(toggles)输出信号,哪条边沿采样输入信号,还有时钟脉冲的稳定电平值(就是时钟信号无效时是高还是低)。每种模式由一对参数刻画,它们称为时钟极(clock polarity)CPOL与时钟期(clock phase)CPHA。

[主从设备]必须使用相同的工作参数——SCLK、CPOL 和 CPHA,才能正常工作。如果有多个[从设备],并且它们使用了不同的工作参数,那么[主设备]必须在读写不同[从设备]间重新配置这些参数。以上SPI总线协议的主要内容。SPI不规定最大传输速率,没有地址方案;SPI也没规定通信应答机制,没有规定流控制规则。事实上,SPI[主设备]甚至并不知道指定的[从设备]是否存在。这些通信控制都得通过SPI协议以外自行实现。例如,要用SPI连接一支[命令-响应控制型]解码芯片,则必须在SPI的基础上实现更高级的通信协议。SPI并不关心物理接口的电气特性,例如信号的标准电压。在最初,大多数SPI应用都是使用间断性时钟脉冲和以字节为单位传输数据的,但现在有很多变种实现了连续性时间脉冲和任意长度的数据帧。

IIC

与SPI的单主设备不同,IIC 是多主设备的总线,IIC没有物理的芯片选择信号线,没有仲裁逻辑电路,只使用两条信号线—— ‘serial data’ (SDA) 和 ‘serial clock’ (SCL)。IIC协议规定:

第一,每一支IIC设备都有一个唯一的七位设备地址;

第二,数据帧大小为8位的字节;

第三,数据(帧)中的某些数据位用于控制通信的开始、停止、方向(读写)和应答机制。

IIC 数据传输速率有标准模式(100 kbps)、快速模式(400 kbps)和高速模式(3.4 Mbps),另外一些变种实现了低速模式(10 kbps)和快速+模式(1 Mbps)。

物理实现上,IIC 总线由两根信号线和一根地线组成。两根信号线都是双向传输的,参考下图。IIC协议标准规定发起通信的设备称为主设备,主设备发起一次通信后,其它设备均为从设备。

IIC 通信过程大概如下。首先,主设备发一个START信号,这个信号就像对所有其它设备喊:请大家注意!然后其它设备开始监听总线以准备接收数据。接着,主设备发送一个7位设备地址加一位的读写操作的数据帧。当所设备接收数据后,比对地址自己是否目标设备。如果比对不符,设备进入等待状态,等待STOP信号的来临;如果比对相符,设备会发送一个应答信号——ACKNOWLEDGE作回应。

当主设备收到应答后便开始传送或接收数据。数据帧大小为8位,尾随一位的应答信号。主设备发送数据,从设备应答;相反主设备接数据,主设备应答。当数据传送完毕,主设备发送一个STOP信号,向其它设备宣告释放总线,其它设备回到初始状态。

基于IIC总线的物理结构,总线上的START和STOP信号必定是唯一的。另外,IIC总线标准规定SDA线的数据转换必须在SCL线的低电平期,在SCL线的高电平期,SDA线的上数据是稳定的。

在物理实现上,SCL线和SDA线都是漏极开路(open-drain),通过上拉电阻外加一个电压源。当把线路接地时,线路为逻辑0,当释放线路,线路空闲时,线路为逻辑1。基于这些特性,IIC设备对总线的操作仅有“把线路接地”——输出逻辑0。

IIC总线设计只使用了两条线,但相当优雅地实现任意数目设备间无缝通信,堪称完美。我们设想一下,如果有两支设备同时向SCL线和SDA线发送信息会出现什么情况。

基于IIC总线的设计,线路上不可能出现电平冲突现象。如果一支设备发送逻辑0,其它发送逻辑1,那么线路看到的只有逻辑0。也就是说,如果出现电平冲突,发送逻辑0的始终是“赢家”。

总线的物理结构亦允许主设备在往总线写数据的同时读取数据。这样,任何设备都可以检测冲突的发生。当两支主设备竞争总线的时候,“赢家”并不知道竞争的发生,只有“输家”发现了冲突——当它写一个逻辑1,却读到0时——而退出竞争。

10位设备地址

任何IIC设备都有一个7位地址,理论上,现实中只能有127种不同的IIC设备。实际上,已有IIC的设备种类远远多于这个限制,在一条总线上出现相同的地址的IIC设备的概率相当高。为了突破这个限制,很多设备使用了双重地址——7位地址加引脚地址(external configuration pins)。IIC 标准也预知了这种限制,提出10位的地址方案。

10位的地址方案对 IIC协议的影响有两点:

第一,地址帧为两个字节长,原来的是一个字节;

第二,第一个字节前五位最高有效位用作10位地址标识,约定是“11110”。

除了10位地址标识,标准还预留了一些地址码用作其它用途,如下表:

时钟拉伸

在 IIC 通信中,主设备决定了时钟速度。因为时钟脉冲信号是由主设备显式发出的。但是,当从设备没办法跟上主设备的速度时,从设备需要一种机制来请求主设备慢一点。这种机制称为时钟拉伸,而基于I²C结构的特殊性,这种机制得到实现。当从设备需要降低传输的速度的时候,它可以按下时钟线,逼迫主设备进入等待状态,直到从设备释放时钟线,通信才继续。

高速模式

原理上讲,使用上拉电阻来设置逻辑1会限制总线的最大传输速度。而速度是限制总线应用的因素之一。这也说明为什么要引入高速模式(3.4 Mbps)。在发起一次高速模式传输前,主设备必须先在低速的模式下(例如快速模式)发出特定的“High Speed Master”信号。为缩短信号的周期和提高总线速度,高速模式必须使用额外的I/O缓冲区。另外,总线仲裁在高速模式下可屏蔽掉。更多的信息请参与总线标准文档。

IIC vs SPI: 哪位是赢家?

我们来对比一下IIC 和 SPI的一些关键点:

第一,总线拓扑结构/信号路由/硬件资源耗费

IIC 只需两根信号线,而标准SPI至少四根信号,如果有多个从设备,信号需要更多。一些SPI变种虽然只使用三根线——SCLK, SS和双向的MISO/MOSI,但SS线还是要和从设备一对一根。另外,如果SPI要实现多主设备结构,总线系统需额外的逻辑和线路。用IIC 构建系统总线唯一的问题是有限的7位地址空间,但这个问题新标准已经解决——使用10位地址。从第一点上看,IIC是明显的大赢家。

第二,数据吞吐/传输速度

如果应用中必须使用高速数据传输,那么SPI是必然的选择。因为SPI是全双工,IIC 的不是。SPI没有定义速度限制,一般的实现通常能达到甚至超过10 Mbps。IIC 最高的速度也就快速+模式(1 Mbps)和高速模式(3.4 Mbps),后面的模式还需要额外的I/O缓冲区,还并不是总是容易实现的。

第三,优雅性

IIC 常被称更优雅于SPI。公正的说,我们更倾向于认为两者同等优雅和健壮。IIC的优雅在于它的特色——用很轻盈的架构实现了多主设备仲裁和设备路由。但是对使用的工程师来讲,理解总线结构更费劲,而且总线的性能不高。

SPI的优点在于它的结构相当的直观简单,容易实现,并且有很好扩展性。SPI的简单性不足称其优雅,因为要用SPI搭建一个有用的通信平台,还需要在SPI之上构建特定的通信协议软件。也就是说要想获得SPI特有而IIC没有的特性——高速性能,工程师们需要付出更多的劳动。另外,这种自定的工作是完全自由的,这也说明为什么SPI没有官方标准。IIC和SPI都对低速设备通信提供了很好的支持,不过,SPI适合数据流应用,而IIC更适合“字节设备”的多主设备应用。

小结

在数字通信协议簇中,IIC和SPI常称为“小”协议,相对Ethernet, USB, SATA, PCI-Express等传输速度达数百上千兆字节每秒的总线。但是,我们不能忘记的是各种总线的用途是什么。“大”协议是用于系统外的整个系统之间通信的,“小”协议是用于系统内各芯片间的通信,没有迹象表明“大”协议有必要取代“小”协议。IIC和SPI的存在和流行体现了“够用就好”的哲学。回应文首,IIC和SPI如此的流行,它是任何一位嵌入式工程师必备的工具。


原文标题:关于I2C和SPI总线协议

文章出处:【微信号:mcu168,微信公众号:玩转单片机】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
分享:

评论

相关推荐

I2C系统显示器

I2C系统显示器
发表于 04-15 19:34 4次 阅读
I2C系统显示器

I2C并行口扩展芯片PCF8574T中文数据手册

I2C并行口扩展芯片PCF8574T中文数据手册分享。
发表于 04-13 14:07 13次 阅读
I2C并行口扩展芯片PCF8574T中文数据手册

怎么样利用AXI Quad SPI快速打通Linux至PL端SPI从设备?

[导读] 前面写过篇介绍ZYNQ基本情况的文章,今天来肝一篇实战文章介绍AXI quad SPI 使....
的头像 FPGA之家 发表于 04-09 17:45 483次 阅读
怎么样利用AXI Quad SPI快速打通Linux至PL端SPI从设备?

嵌入式系统中常用的IIC与SPI该怎么选?

现今,在低端数字通信应用领域,我们随处可见IIC(Inter-Integrated Circuit)....
的头像 FPGA之家 发表于 04-07 16:12 127次 阅读
嵌入式系统中常用的IIC与SPI该怎么选?

OTT2001A IIC协议指导

OTT2001A是208通道电容式触摸驱动器LSI,专为高达7英寸的无源矩阵触摸模块而设计。 当用户....
发表于 04-07 15:13 8次 阅读
OTT2001A IIC协议指导

I2C通信过程详解,细腻到你不得不懂的程度,错过不再有

发表于 04-07 10:50 274次 阅读
I2C通信过程详解,细腻到你不得不懂的程度,错过不再有

你知道如何模拟spi通信么?没有spi通信模块的单片机之必备神器

发表于 04-07 10:48 200次 阅读
你知道如何模拟spi通信么?没有spi通信模块的单片机之必备神器

香橙派OrangePi zero2开发板连接3.5寸SPI LCD显示屏的操作步骤

Orange Pi Zero2开发板是一款采用全志H616高性能处理器,支持安卓10和Linux操作系统,集成千兆以太网、蓝牙5.0+双频WiFi、...
发表于 04-06 16:24 101次 阅读
香橙派OrangePi zero2开发板连接3.5寸SPI LCD显示屏的操作步骤

I2C CMOS串行EEPROM简介

Microchip Technology Inc.24AA256 / 24LC256 /24FC25....
发表于 04-06 14:15 26次 阅读
I2C CMOS串行EEPROM简介

使用C语言实现8051MCU与SPI串行EEPROM的接口

Microchip Technology 的 25XXX 系列串行 EEPROM 支持半双工协议,该....
发表于 04-02 14:25 15次 阅读
使用C语言实现8051MCU与SPI串行EEPROM的接口

8051MCU与SPI串行EEPROM的接口设计

Microchip Technology的25XXX系列串行EEPROM支持半双工协议,在主从模式下....
发表于 04-02 14:20 18次 阅读
8051MCU与SPI串行EEPROM的接口设计

实现8051MCU与I2C串行EEPROM的接口

Microchip Technology 的 24XXX 系列串行 EEPROM 支持双向 2 线总....
发表于 04-02 13:53 18次 阅读
实现8051MCU与I2C串行EEPROM的接口

使用硬件模块实现8051MCU与SPI串行EEPROM的接口

Microchip Technology 的 25XXX 系列串行 EEPROM 支持半双工协议,该....
发表于 04-02 13:52 18次 阅读
使用硬件模块实现8051MCU与SPI串行EEPROM的接口

适用于PIC16F1XXX增强型内核的I2C自举程序

新的PIC16F1XXX增强型内核单片机能够在软件控制下写入自己的程序存储器。这允许单片机在闪存程序....
发表于 04-02 10:00 25次 阅读
适用于PIC16F1XXX增强型内核的I2C自举程序

Microchip串行RTCC器件的建议用法

本应用笔记提供了一些关于使用 Microchip RTCC 系列器件的帮助和指导,并且涵盖了 I2C....
发表于 04-02 09:32 16次 阅读
Microchip串行RTCC器件的建议用法

关于为逐次逼近型ADC 设计可靠的数字接口原理

逐次逼近型模数转换器在最高18 位分辨率和最高5 MSPS 速率的应用中有什么优势?...
发表于 04-02 07:44 0次 阅读
关于为逐次逼近型ADC 设计可靠的数字接口原理

软件I2C的配置步骤

本文将基于stm32l475-atk-pandora开发板就软件I2C的驱动开发展开讲解。   ...
发表于 04-02 07:42 101次 阅读
软件I2C的配置步骤

学习单片机哪些步骤不能省?

成为一名嵌入式工程师,如何深入进行单片机学习?...
发表于 04-02 06:56 0次 阅读
学习单片机哪些步骤不能省?

使用外设引脚选择PPS扩展8位数字通信技术简介

PIC® 单片机提供了很多类型的数字通信。例如大多数期间都具有 I2C 和 SPI 通信的主同步串行....
发表于 04-01 14:47 19次 阅读
使用外设引脚选择PPS扩展8位数字通信技术简介

HAL库SPI DMA的使用问题

使用了HAL库的函数来进行数据的读写: HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTy...
发表于 04-01 11:47 1111次 阅读
HAL库SPI DMA的使用问题

Microchip I2C EERAM器件的推荐使用方法

EERAM是一种非易失性存储器,由一个SRAM和配套的备份EEPROM组成。借助EERAM的设计,可....
发表于 04-01 11:45 22次 阅读
Microchip I2C EERAM器件的推荐使用方法

使用单片机实现I2C接口数字电位器AD5242应用的C语言实例免费下载

本文档的主要内容详细介绍的是使用单片机实现I2C接口数字电位器AD5242应用的C语言实例免费下载。
发表于 03-31 16:31 17次 阅读
使用单片机实现I2C接口数字电位器AD5242应用的C语言实例免费下载

使用单片机实现SPI接口存储器AT25F1024读写与显示的C语言实例

本文档的主要内容详细介绍的是使用单片机实现SPI接口存储器AT25F1024读写与显示的C语言实例免....
发表于 03-31 16:31 17次 阅读
使用单片机实现SPI接口存储器AT25F1024读写与显示的C语言实例

使用单片机实现SPI接口温度传感器TC72应用测试的C语言实例

本文档的主要内容详细介绍的是使用单片机实现SPI接口温度传感器TC72应用测试的C语言实例免费下载。
发表于 03-31 16:31 26次 阅读
使用单片机实现SPI接口温度传感器TC72应用测试的C语言实例

使用单片机实现兼容I2C接口的MAX6955驱动16段数码管显示的C语言实例

本文档的主要内容详细介绍的是使用单片机实现兼容I2C接口的MAX6955驱动16段数码管显示的C语言....
发表于 03-31 14:45 16次 阅读
使用单片机实现兼容I2C接口的MAX6955驱动16段数码管显示的C语言实例

使用单片机实现兼容I2C接口的MAX6953驱动4片5乘7点阵显示器的C语言

本文档的主要内容详细介绍的是使用单片机实现兼容I2C接口的MAX6953驱动4片5乘7点阵显示器的C....
发表于 03-31 14:45 29次 阅读
使用单片机实现兼容I2C接口的MAX6953驱动4片5乘7点阵显示器的C语言

使用单片机实现I2C存储器设计的中文硬件字库应用的C语言实例

本文档的主要内容详细介绍的是使用单片机实现I2C存储器设计的中文硬件字库应用的C语言实例。
发表于 03-31 14:45 14次 阅读
使用单片机实现I2C存储器设计的中文硬件字库应用的C语言实例

AVR315:将TWI模块作为I2C主器件

双线串行接口(Two-Wire Interface,TWI)兼容 Philips I2C 协议。该总....
发表于 03-31 10:38 23次 阅读
AVR315:将TWI模块作为I2C主器件

如何在Linux下使用SAMA5D2 SPI

本应用笔记介绍在Linux下使用SAMA5D2 SPI的入门信息。
发表于 03-31 10:01 14次 阅读
如何在Linux下使用SAMA5D2 SPI

浅述51兼容射频Soc nRF9E5和无线光机鼠标设计

发光二极管和光敏传感器,组成光电耦合器。光敏传感器内部沿垂直方向排列有两个光敏晶体管A和B。由于译码....
的头像 电子发烧友网工程师 发表于 03-31 09:31 152次 阅读
浅述51兼容射频Soc nRF9E5和无线光机鼠标设计

如何在Linux下使用SAMA5D2 I2C

本应用笔记介绍在 Linux 下使用 SAMA5D2 I2C 的入门信息。
发表于 03-30 15:45 15次 阅读
如何在Linux下使用SAMA5D2 I2C

I2C OLED显示屏的51单片机/STM32/Arduino驱动程序

I2C OLED显示屏的51单片机/STM32/Arduino驱动程序说明。
发表于 03-26 09:37 62次 阅读
I2C OLED显示屏的51单片机/STM32/Arduino驱动程序

树莓派系列教程汇总

第一次接触树莓派的时候也是刚学 linux 系统。抱着玩玩的心态买了一块树莓派 B+,刚拿到手的是有....
发表于 03-26 09:28 32次 阅读
树莓派系列教程汇总

W25Q128串行闪存的数据手册免费下载

W25Q128BV(8M位)串行闪存为空间、引脚和电源有限的系统提供了存储解决方案。25Q系列提供的....
发表于 03-25 15:10 70次 阅读
W25Q128串行闪存的数据手册免费下载

基于SPI协议的SD卡读写机制与实现方法

基于SPI协议的SD卡读写机制与实现方法。
发表于 03-25 11:21 29次 阅读
基于SPI协议的SD卡读写机制与实现方法

使用单片机实现I2C总线的实验文件免费下载

本文档的主要内容详细介绍的是使用单片机实现I2C总线的实验文件免费下载。
发表于 03-24 11:11 17次 阅读
使用单片机实现I2C总线的实验文件免费下载

使用51单片机实现PCF8591 I2C串行AD的仿真文件免费下载

本文档的主要内容详细介绍的是使用51单片机实现PCF8591 I2C串行AD的仿真文件免费下载。
发表于 03-23 11:05 21次 阅读
使用51单片机实现PCF8591 I2C串行AD的仿真文件免费下载

常见总线CAN、USART、SPI、SCI简介

任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与....
发表于 03-22 13:48 49次 阅读
常见总线CAN、USART、SPI、SCI简介

基于FPGA的SPI接口具体资料及电路图

基于FPGA的SPI接口具体资料及电路图
发表于 03-22 09:47 37次 阅读
基于FPGA的SPI接口具体资料及电路图

VK2C22 LCD控制驱动器的数据手册免费下载

VK2C22 是一款存储器映射和多功能 LCD 控制 / 驱动芯片。该系列芯片显示模式有 176 点....
发表于 03-22 08:00 48次 阅读
VK2C22 LCD控制驱动器的数据手册免费下载

请问隔离式SPI通信怎么实现?

隔离式SPI通信怎么实现?原来这么简单!
发表于 03-18 08:14 0次 阅读
请问隔离式SPI通信怎么实现?

求一款基于I2C串行总线接口的数字智能温度传感器

基于I2C串行总线接口的数字智能温度传感器
发表于 03-18 06:51 0次 阅读
求一款基于I2C串行总线接口的数字智能温度传感器

在FPGA上编写通过SPI总线配置外部PLL芯片AD9518和ADC9268的程序

本文档的主要内容详细介绍的是在FPGA上编写通过SPI总线配置外部PLL芯片AD9518和ADC92....
发表于 03-10 15:50 68次 阅读
在FPGA上编写通过SPI总线配置外部PLL芯片AD9518和ADC9268的程序

STM32 I2C基础内容

I²C 总线是一种特殊的总线,因为多器件需共用总线,加上数据线需支持双向通信。SDA要求开漏输出模式....
的头像 strongerHuang 发表于 03-09 11:20 482次 阅读
STM32 I2C基础内容

Neptune模组 SPI怎么用DMA向PB_05发送数据呢?

#include #include #include "cmsis_os2.h" #include "ohos_init.h" #include "wm_type_def.h" #include "driver...
发表于 03-08 19:39 101次 阅读
Neptune模组 SPI怎么用DMA向PB_05发送数据呢?

MSP430设计实例 MSP430F5504的USB混合信号处理器设计广播系统

SoC已集成了很多数字功能,设计者们开始将目光投向复杂的模拟与射频功能。模拟模块不适用于构建SoC的....
发表于 03-08 11:22 3503次 阅读
MSP430设计实例  MSP430F5504的USB混合信号处理器设计广播系统

FPGA入门系列15--SPI总线介绍

SPI flash 芯片应用十分广泛,在很多电子产品上面或多或少都有它的踪影,如手机、数码、液晶显示....
的头像 FPGA技术联盟 发表于 03-04 16:41 348次 阅读
FPGA入门系列15--SPI总线介绍

STM32CubeMX I2C SHT20的工程文件免费下载

STM32F10x 硬件I2C2读取SHT20温湿度并通过printf重定向到串口输出信息, 基于S....
发表于 03-03 08:00 42次 阅读
STM32CubeMX I2C SHT20的工程文件免费下载

基于ARM9芯片的S3C2440和Linux操作系统设计SPI驱动程序

作者:北京工业大学 集成电路与系统基础实验室 李琦;贺明;董利民;董健 在嵌入式开发过程中,许多系统....
发表于 03-02 16:20 2131次 阅读
基于ARM9芯片的S3C2440和Linux操作系统设计SPI驱动程序

Kinetis E系列上的I2C引导加载程序设计

在一个特定的场合,很多应用或产品都需要升级固件,以便修复某些发现的 Bug 或提高性能。 其中大多数....
发表于 02-24 08:00 36次 阅读
Kinetis E系列上的I2C引导加载程序设计

干货:I2C总线最全教程讲解

  裸机操作篇 本文以三星exynos4412为例讲解I2C时序,并挂载在I2C控制器mpu6050....
的头像 玩转单片机 发表于 02-20 15:04 761次 阅读
干货:I2C总线最全教程讲解

将TWI模块作为I2C主器件

AVR315:将 TWI 模块作为 I2C 主器件 双线串行接口(TWI)兼容 Philips I2....
的头像 Microchip微芯 发表于 02-08 09:50 372次 阅读
将TWI模块作为I2C主器件

【紫光同创国产FPGA教程】【第八章】SD卡读写实验

SD卡是现在嵌入式设备重要的存储模块,内部集成了nand flash控制器,方便了主机的的管理。本实....
的头像 FPGA技术专栏 发表于 02-05 11:35 2524次 阅读
【紫光同创国产FPGA教程】【第八章】SD卡读写实验

轻松实现隔离式SPI通信

监测和控制不同的系统需要能够直接访问传感器和驱动器,最好是从一个中心位置,采用标准化通信方法(例如串....
发表于 02-05 07:37 94次 阅读
轻松实现隔离式SPI通信

【ZYNQ Ultrascale+ MPSOC FPGA教程】第二十二章PS端I2C的使用

ReadBuffer清0,WriteBuffer赋FF写16个字节到EEPROM读EEPROM的16....
的头像 FPGA技术专栏 发表于 01-27 09:27 2293次 阅读
【ZYNQ Ultrascale+ MPSOC FPGA教程】第二十二章PS端I2C的使用

NRF24L01无线模块的开发手册免费下载

NRF24L01 无线模块,采用的芯片是 NRF24L01,该芯片的主要特点如下: 1)2.4G 全....
发表于 01-27 08:00 73次 阅读
NRF24L01无线模块的开发手册免费下载

如何在FPGA中实现SPI4.2接口

偏移和包重组是在FPGA中实现SPI一4.2接口的核心难点,在分析偏移和包重组原理的基础E,给出基于....
发表于 01-25 14:51 92次 阅读
如何在FPGA中实现SPI4.2接口

NT3H1101和NT3H1201无线射频芯片的数据手册免费下载

NTAG I2C-进入NFC世界:简单且成本最低。NTAG I2C是NXP的NTAG系列的第一款产品....
发表于 01-21 08:00 202次 阅读
NT3H1101和NT3H1201无线射频芯片的数据手册免费下载

GX09和GX06 SPI接口使用说明免费下载

初始化代码需要根据 IC 规格书编写,首先在 IC 规格书中找到 IC 接收 SPI 数据包的数据格....
发表于 01-13 08:00 85次 阅读
GX09和GX06 SPI接口使用说明免费下载

AD5648 八通道、14位、SPI电压输出denseDAC,集成5 PPM/°C片内基准电压源

信息优势和特点 低功耗,最小的引脚兼容、八通道DACAD5668: 16位AD5648: 14位AD5628: 12位 16引脚和14引脚TSSOP封装 1.25 V/2.5 V、5 ppm/ºC片内基准电压源 关断模式下的功耗:400 nA (5 V),200 nA (3 V) 采用2.7 V至5.5 V电源供电,通过设计保证单调性 上电复位至零电平 3种关断功能 硬件/LDAC和/LDAC脚无效使能功能 /CLR功能,清零至可编程码 轨到轨工作产品详情AD5648是一款低功耗、八通道、14位、缓冲电压输出DAC,采用2.7 V至5.5 V单电源供电,通过设计保证单调性。 AD5648内置一个片内基准电压源,内部增益为2。AD5648-1内置一个1.25 V、 5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD5648-2内置一个2.5 V 、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源通过软件写入启用。 该器件内置一个上电复位电路,确保DAC上电后输出至0 V并保持该电平,直到执行一次有效的写操作为止。此外还具有各通道独立关断特性,在关断模式下,器件在5 V时的功耗降至400 nA,并提供软件可选输出负载。 利用/LDAC功能可以同时更新所有...
发表于 04-18 19:24 87次 阅读
AD5648 八通道、14位、SPI电压输出denseDAC,集成5 PPM/°C片内基准电压源

AD5647R 双通道、14位NANODAC®,内置5 ppm/°C片内基准电压源和I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压 3 mm x 3 mm、LFCSP和10引脚MSOP封装 采用2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC®系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压源。内部基准电压源通过软件写入启用。AD5667和A...
发表于 04-18 19:23 849次 阅读
AD5647R 双通道、14位NANODAC®,内置5 ppm/°C片内基准电压源和I2C®接口

AD5665R 四通道、16位nanoDAC®、内置5 ppm/°C片内基准电压源和I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、四通道nanoDAC AD5625R/AD5645R/AD5665R12/14/16位nanoDAC2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512/16位nanoDAC只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。产品详情AD5625R/AD5645R/AD5665R和AD5625/AD5665均属于nanoDAC®系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V或5 V;AD56x5R的...
发表于 04-18 19:23 48次 阅读
AD5665R 四通道、16位nanoDAC®、内置5 ppm/°C片内基准电压源和I2C®接口

AD5645R 四通道、14位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、四通道 nanoDAC AD5625R/AD5645R/AD5665R12-/14-/16位 nanoDACs2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装 1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512-/16位nanoDACs只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件LDAC 和 CLR 功能 I2兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。 产品详情AD5625R/AD5645R/AD5665R和AD5625/AD5665均属于nanoDAC®系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V或5 V;...
发表于 04-18 19:23 52次 阅读
AD5645R 四通道、14位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

AD5629R 八通道、12位、I2C电压输出denseDAC,集成5 ppm/°C片内基准电压源

信息优势和特点 低功耗、小尺寸、引脚兼容的八通道DAC:AD5629R:12位AD5669R:16位 4mm X 4mm 16引脚LFCSP和16引脚TSSOP封装 用户可选的1.25 V/2.5 V、5 ppm/ºC片内基准电压源 关断模式的功耗:400 nA (5 V)、200 nA (3 V) 2.7 V 至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 3种关断功能 硬件LDAC和CLR功能 I2C 兼容型串行接口支持标准(100 kHz)和快速(400 kHz)模式产品详情AD5629R是一款低功耗、八通道、12位、缓冲电压输出DAC,采用2.7 V至5.5 V单电源供电,通过设计保证单调性。这款器件内置一个片内基准电压源,内部增益为2。AD5629R-1内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围为2.5 V;AD5629R-2和AD5629R-3内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围为5 V。上电时,片内基准电压关闭,因而可以用外部基准电压。内部基准电压则通过软件写入使能。该器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到执行一次有效的写操作为止。此外还具有各通道独立省电特性,在省电模式下,器件在5 V时的功耗降至400 nA,并提供软件可选输出负载。产品特...
发表于 04-18 19:23 402次 阅读
AD5629R 八通道、12位、I2C电压输出denseDAC,集成5 ppm/°C片内基准电压源

AD5628 8通道、12位、SPI电压输出denseDAC,集成5 ppm/°C片内基准电压源

信息优势和特点 低功耗、小尺寸、引脚兼容的八通道DAC:12位 14引脚/16引脚TSSOP、16引脚LFCSP和16引脚WLCSP封装 1.25 V/2.5 V、5 ppm/°C片内基准电压源 关断模式下的功耗:400 nA (5 V),200 nA (3 V) 2.7 V至5.5 V电源 通过设计保证单调性 上电复位至零电平或中间电平 3种关断功能 硬件、LDAC和LDAC无效使能功能 CLR功能,清零至可编程码 轨到轨工作产品详情AD5628是一款低功耗、8通道、12位、缓冲电压输出DAC,采用2.7 V至5.5 V单电源供电,通过设计保证单调性。AD5628提供4 mm × 4 mm LFCSP和16引脚TSSOP两种封装。AD5628内置一个片内基准电压源,内部增益为2。AD5628-1内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD5628-2内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源通过软件写入启用。该器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到执行一次有效的写操作为止。此外还具有各通道独立关断特性,在关断模式下,器件在5 V时的功耗降至400 nA,并提...
发表于 04-18 19:23 191次 阅读
AD5628 8通道、12位、SPI电压输出denseDAC,集成5 ppm/°C片内基准电压源

AD5625R 四通道、12位 nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、四通道nanoDACs AD5625R/AD5645R/AD5665R12-/14-/16位 nanoDACs2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512-/16位nanoDACs只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件 LDAC 和 CLR功能 I2C兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。 产品详情AD5625R/AD5645R/AD5665R 和 AD5625/AD5665 均属于nanoDAC® 系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。 AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V...
发表于 04-18 19:23 143次 阅读
AD5625R 四通道、12位 nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

AD5627 双通道、12位nanoDAC®,内置I2C®接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压 3 mm x 3 mm、LFCSP和10引脚MSOP封装 采用2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源则通过软件写入启用。AD5667和AD5...
发表于 04-18 19:23 146次 阅读
AD5627 双通道、12位nanoDAC®,内置I2C®接口

AD5627R 双通道、12位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、双通道nanoDAC AD5627R/AD5647R/AD5667R:12/14/16位,1.25 V/2.5 V、5 ppm/°C片内基准电压源 AD5627/AD5667:12/16位,只能使用外部基准电压源 3 mm x 3 mm、LFCSP和10引脚MSOP封装 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至零电平 各通道独立关断 硬件LDAC和CLR功能 I2C兼容型串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)三种模式产品详情AD5627R/AD5647R/AD5667R和AD5627/AD5667均属于nanoDAC系列,分别是低功耗、双通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5627R/AD5647R/AD5667R均内置一个片内基准电压源。AD56x7RBCPZ内置一个1.25 V、5 ppm/°C基准电压源,满量程输出范围可达到2.5 V;AD56x7RBRMZ内置一个2.5 V、5 ppm/°C基准电压源,满量程输出范围可达到5 V。上电时,片内基准电压源关闭,因而可以用外部基准电压。内部基准电压源则通过软件写入启用。AD5667和AD562...
发表于 04-18 19:23 266次 阅读
AD5627R 双通道、12位nanoDAC® ,内置5 PPM/°C片内基准电压源和I2C® 接口

AD5625 四通道、12位 nanoDAC®,内置 I2C® 接口

信息优势和特点 低功耗,最小的引脚兼容、四通道nanoDAC AD5625R/AD5645R/AD5665R12-/14-/16位 nanoDACs2.5 V、5 ppm/°C片内基准电压源,采用TSSOP封装2.5 V、10 ppm/°C片内基准电压源,采用LFCSP封装1.25 V、10 ppm/°C片内基准电压源,采用LFCSP封装 AD5625/AD566512-/16位nanoDACs只能使用外部基准电压源 3 mm × 3 mm、10引脚LFCSP和14引脚TSSOP 2.7 V 至5.5 V电源供电 通过设计保证单调性 上电复位至零电平或中间电平 各通道独立关断 硬件 LDAC 和 CLR 功能 I2C兼容串行接口,支持标准(100 kHz)、快速(400 kHz)和高速(3.4 MHz)模式。产品详情AD5625R/AD5645R/AD5665R和AD5625/AD5665均属于nanoDAC®系列,分别是低功耗、四通道、12/14/16位缓冲电压输出数模转换器(DAC),含有或不含片内基准电压源,采用2.7 V至5.5 V单电源供电,通过设计保证单调性,还有一个I2C兼容型串行接口。AD5625R/AD5645R/AD5665R均内置一个片内基准电压源。AD56x5R的LFCSP封装产品内置一个1.25 V或2.5 V、10 ppm/°C基准电压源,满量程输出范围可达到2.5 V或...
发表于 04-18 19:23 216次 阅读
AD5625 四通道、12位 nanoDAC®,内置 I2C® 接口

AD5641 2.7 V至5.5 V、小于100 µA、14位nanoDAC,SPI接口,采用LFCSP和SC70封装

信息优势和特点 6引脚LFCSP和SC70封装 微功耗工作:100 μA(最大值,5 V) 关断模式:0.2 μA(典型值,3 V) 单通道14位DAC B级积分非线性(INL):±4 LSB A级积分非线性(INL):±16 LSB 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 低功耗,串行接口采用施密特触发式输入 片内轨到轨输出缓冲放大器 SYNC中断设置 产品详情AD5641属于nanoDAC®系列,是一款单通道、14位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时典型功耗为75 μA,采用小型LFCSP和SC70封装。它内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5641采用多功能三线式串行接口,能够以最高30 MHz的时钟速率工作,并与SPI®、QSPI™、MICROWIRE™、DSP接口标准兼容。这款器件的基准电压从电源输入获得,因此它具有最宽的动态输出范围。该器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。AD5641具有关断特性,在关断模式下,器件在3 V时的典型功耗降至0.2 μA,并能提供软件可选的输出负载。...
发表于 04-18 19:22 301次 阅读
AD5641 2.7 V至5.5 V、小于100 µA、14位nanoDAC,SPI接口,采用LFCSP和SC70封装

AD5622 2.7 V至5.5 V、小于100 nanoA、12位nanoDAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

信息优势和特点 单通道8/10/12位DAC,INL = 2 LSB 6引脚SC70封装 微功耗工作:5 V时最大电流100 µA 关断模式:<150 nA (3 V) 采用2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 支持I2C®兼容型串行接口:标准(100KHz)、快速(400KHz)及高速(3.4MHz)模式 片内轨到轨输出缓冲放大器 工作温度范围:-40ºC至125ºC产品详情AD5602/AD5612/AD5622均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时功耗小于100 µA,采用SC70小型封装。每个DAC都内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5602/AD5612/AD5622采用双线式I2C兼容型串行接口,能够以标准(100 KHz)、快速(400 KHz)及高速(3.4 MHz)三种模式工作。三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。各器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。此外还具有关断特性,在关断模式下,器件在3 V时的功耗降至150 nA以下,并提供软件可选输出负载。可...
发表于 04-18 19:22 440次 阅读
AD5622 2.7 V至5.5 V、小于100 nanoA、12位nanoDAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

AD5621 2.7V至5.5V、小于100 µA、12位nanoDAC®,SPI接口,采用LFCSP和SC70封装

信息优势和特点 6引脚LFCSP和SC70封装 微功耗工作:5 V时最大电流100 μA 关断模式:0.2 μA(典型值,3 V) 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 欲了解更多信息,请参考数据手册产品详情AD5601/AD5611/AD5621均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时典型功耗为75 μA,采用小型LFCSP和SC70封装。这些器件内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5601/AD5611/AD5621采用多功能三线式串行接口,能够以最高30 MHz的时钟速率工作,并与SPI、QSPI™、MICROWIRE™、DSP接口标准兼容。 三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。上述器件均内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。 此外还具有省电特性,在省电模式下,器件在3 V时的典型功耗降至0.2 μA,并且提供可由软件选择的输出负载。可通过串行接口进入关断模式。在正常工作模式下,这些器件具有低功耗特性,非常适合便携式电池供...
发表于 04-18 19:22 426次 阅读
AD5621 2.7V至5.5V、小于100 µA、12位nanoDAC®,SPI接口,采用LFCSP和SC70封装

AD5612 2.7 V至5.5 V、小于100nanoA、10位NANODAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

信息优势和特点 单通道8/10/12位DAC,INL = 2 LSB 6引脚SC70封装 微功耗工作:5 V时最大电流100 µA 关断模式:<150 nA (3 V) 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 支持I2C®兼容型串行接口:标准(100KHz)、快速(400KHz)及高速(3.4MHz)模式 片内轨到轨输出缓冲放大器 工作温度范围:-40ºC至125ºC产品详情AD5602/AD5612/AD5622均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时功耗小于100 µA,采用SC70小型封装。每个DAC都内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5602/AD5612/AD5622采用双线式I2C兼容型串行接口,能够以标准(100 KHz)、快速(400 KHz)及高速(3.4 MHz)三种模式工作。 三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。各器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。此外还具有关断特性,在关断模式下,器件在3 V时的功耗降至150 nA以下,并提供软件可选输出负载。可通...
发表于 04-18 19:22 327次 阅读
AD5612 2.7 V至5.5 V、小于100nanoA、10位NANODAC®数模转换器,内置I2C兼容型接口,采用SC70小型封装

AD5602 2.7 V至5.5 V、小于100 nanoA、8位 NANODAC® 数模转换器,内置I2C兼容型接口,采用SC70小型封装

信息优势和特点 单通道8/10/12位DAC,INL = 2 LSB 6引脚SC70封装 微功耗工作:5 V时最大电流100 µA 关断模式:<150 nA (3 V) 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 支持I2C®兼容型串行接口:标准(100KHz)、快速(400KHz)及高速(3.4MHz)模式 片内轨到轨输出缓冲放大器 工作温度范围:-40ºC至125ºC产品详情AD5602/AD5612/AD5622均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时功耗小于100 µA,采用SC70小型封装。每个DAC都内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5602/AD5612/AD5622采用双线式I2C兼容型串行接口,能够以标准(100 KHz)、快速(400 KHz)及高速(3.4 MHz)三种模式工作。 三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。各器件内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。此外还具有关断特性,在关断模式下,器件在3 V时的功耗降至150 nA以下,并提供软件可选输出负载。可通过...
发表于 04-18 19:22 463次 阅读
AD5602 2.7 V至5.5 V、小于100 nanoA、8位 NANODAC® 数模转换器,内置I2C兼容型接口,采用SC70小型封装

CAT25128 EEPROM串行128-Kb SPI

28是一个EEPROM串行128-Kb SPI器件,内部组织为16kx8位。它具有64字节页写缓冲区,并支持串行外设接口(SPI)协议。通过片选( CS )输入使能器件。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 HOLD 输入可用于暂停与CAT25128设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 片上ECC(纠错码)使该器件适用于高可靠性应用。 适用于新产品(Rev. E)。 特性 20 MHz SPI兼容 1.8 V至5.5 V操作 硬件和软件保护 低功耗CMOS技术 SPI模式(0,0& 1,1) 工业温度范围 自定时写周期 64字节页面写缓冲区 块写保护 - 保护1 / 4,1 / 2或所有EEPROM阵列 1,000,000计划/时代se周期 100年数据保留 8引脚SOIC,TSSOP和8焊盘TDFN,UDFN封装 此设备无铅,无卤素/ BFR,符合RoHS标准 其他识别具有永久写保护的页面 应用 汽车系统 通讯系统 计算机系统 消费者系统 工业系统 电路图、引脚图和封装图...
发表于 04-18 19:13 412次 阅读
CAT25128 EEPROM串行128-Kb SPI

CAT25256 EEPROM串行256-Kb SPI

56是一个EEPROM串行256-Kb SPI器件,内部组织为32kx8位。它具有64字节页写缓冲区,并支持串行外设接口(SPI)协议。通过片选( CS )输入使能器件。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 HOLD 输入可用于暂停与CAT25256设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 片上ECC(纠错码)使该器件适用于高可靠性应用。 适用于新产品(Rev. E)。 特性 20 MHz(5 V)SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0)& (1,1) 64字节页面写缓冲区 具有永久写保护的附加标识页(新产品) 自定时写周期 硬件和软件保护 100年数据保留期 1,000,000个程序/擦除周期 低功耗CMOS技术 块写保护 - 保护1 / 4,1 / 2或整个EEPROM阵列 工业温度范围 8引脚SOIC ,TSSOP和8焊盘UDFN封装 此器件无铅,无卤素/ BFR,以及符合RoHS标准 应用 汽车系统 Communica tions Systems 计算机系统 消费者系统 工业系统 ...
发表于 04-18 19:13 1123次 阅读
CAT25256 EEPROM串行256-Kb SPI

CAT25040 4-kb SPI串行CMOS EEPROM存储器

信息 CAT25040是一个4-kb SPI串行CMOS EEPROM器件,内部组织为512x8位。安森美半导体先进的CMOS技术大大降低了器件的功耗要求。它具有16字节页写缓冲区,并支持串行外设接口(SPI)协议。该器件通过片选()启用。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 输入可用于暂停与CAT25040设备的任何串行通信。该器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 20 MHz(5 V)SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0和1,1) 16字节页面写入缓冲区 自定时写入周期 硬件和软件保护 块写保护 - 保护1 / 4,1 / 2或整个EEPROM阵列 低功耗CMOS技术 1,000,000编程/擦除周期 100年数据保留 工业和扩展温度范围 PDIP,SOIC,TSSOP 8引脚和TDFN,UDFN 8焊盘封装 这些器件无铅,无卤素/ BFR,符合RoHS标准...
发表于 04-18 19:13 160次 阅读
CAT25040 4-kb SPI串行CMOS EEPROM存储器

CAT25160 EEPROM串行16-Kb SPI

60是一个EEPROM串行16-Kb SPI器件,内部组织为2048x8位。它们具有32字节页写缓冲区,并支持串行外设接口(SPI)协议。通过片选( CS )输入使能器件。此外,所需的总线信号是时钟输入(SCK),数据输入(SI)和数据输出(SO)线。 HOLD 输入可用于暂停与CAT25160设备的任何串行通信。这些器件具有软件和硬件写保护功能,包括部分和全部阵列保护。 特性 10 MHz SPI兼容 1.8 V至5.5 V电源电压范围 SPI模式(0,0& 1,1) 32字节页面写入缓冲区 自定时写周期 硬件和软件保护 块写保护 - 保护1 / 4,1 / 2或全部EEPROM阵列 低功耗CMOS技术 1,000,000个编程/擦除周期 100年数据保留 工业温度范围 符合RoHS标准的8引脚SOIC,T SSOP和8-pad UDFN软件包 应用 汽车系统 通讯系统 计算机系统 消费者系统 工业系统 电路图、引脚图和封装图...
发表于 04-18 19:13 285次 阅读
CAT25160 EEPROM串行16-Kb SPI

AD5611 2.7 V至5.5 V、小于100 µA、10位nanoDAC®、SPI接口、采用LFCSP和SC70封装

信息优势和特点 6引脚SC70和LFCSP封装 微功耗工作:5 V时最大电流100 μA 关断模式:0.2 μA(典型值,3 V) 2.7 V至5.5 V电源供电 通过设计保证单调性 上电复位至0 V,具有掉电检测功能 3种关断功能 欲了解更多信息,请参考数据手册产品详情ADI参考设计:混合信号数字预失真(MSDPD)平台AD5601/AD5611/AD5621均属于nanoDAC®系列,分别是单通道、8/10/12位、缓冲电压输出DAC,使用2.7 V至5.5 V单电源供电,5 V时典型功耗为75 μA,采用小型LFCSP和SC70封装。这些器件内置片内精密输出放大器,能够实现轨到轨输出摆幅。AD5601/AD5611/AD5621采用多功能三线式串行接口,能够以最高30 MHz的时钟速率工作,并与SPI、QSPI™、MICROWIRE™、DSP接口标准兼容。三款器件的基准电压均从电源输入获得,因此具有最宽的动态输出范围。上述器件均内置一个上电复位电路,确保DAC输出上电至0 V并保持该电平,直到对该器件执行一次有效的写操作为止。 此外还具有省电特性,在省电模式下,器件在3 V时的典型功耗降至0.2 μA,并且提供可由软件选择的输出负载。可通过串行接口进入关断模式。在正常工作模...
发表于 04-18 19:12 419次 阅读
AD5611 2.7 V至5.5 V、小于100 µA、10位nanoDAC®、SPI接口、采用LFCSP和SC70封装