侵权投诉

PCB设计软件输出装配图的3个方法

PCB线路板打样 2020-11-11 11:09 次阅读

PCB设计完成后常常需要输出产品的零件装配图,本期内容为大家展示主流PCB设计软件AltiumCadenceAllegro输出装配图的3个方法。

电子产品

Altium输出装配图的方法有两种,CadenceAllegro输出装配图的方法有一种,下面为大家详细介绍。

1.使用Altium的装配图输出功能

这个是最简单,最直接的方法。以下面一个双面板为例演示:

1.打开file菜单下面的AssemblyOutputs,选择第一项AssemblyDrawings.

step1

2.随后可以看到PCB装配图输出前的预览图,但是我们还需要详细地配置才能输出,否则会可能包含一些我们不想显示出来的东西。

效果预览

在图上点击右键,选择configuration进行详细的配置。

页面配置

随后在配置菜单里定义需要输出的层。比如我的PCB外形是用机械1层定义的,所以就只保留TOP层、丝印层、机械1层。底层装配图配置也是如此。注意:不同版本的软件有细微的差异,但是基本上操作方法一样。

删除不需要的

另外,需要把Holes和TTFonts勾上才能使输出的PDF可以进行关键字搜索。注意,底层的装配图需要勾选Mirror.

详细配置

3.以上步骤完成后点击OK,可以看到装配图上已经删掉了杂乱的东西。

效果图

我们还可以进一步优化这个装配图,使装配加上页码、色彩。在图上点击右键,选择pagesetup.

随后在窗口上的colorset里面选择第二项color,这样输出装配图就是彩色的了。另外还可以设置装配图的纸张大小、方向、缩放比例。

效果图

可以看到,装配图已经配置完成,直接点击打印就可以输出成PDF或者XPS格式的文档。这种文档支持搜索原件位号,相当方便。

2.使用Altium的Draftsman功能输出装配图

高版本的Altium软件有一个Draftsman功能非常强大,可以输出钻孔表,生产细节、产品三视图等诸多细节。当然,用来输出装配图绝对是轻而易举。下面是详细步骤:

1.在打开的工程文件时,从文件里新建一个Draftsman文件。模板选择默认就行。

新建文件

默认模板

2.开始放置装配图。可以在place菜单里放置BoardAssemblyview,也可以在浮动工具栏里面点那个图标进行放置。我们需要放置两个,分别是两个面的装配图。当一页纸放不下时,可以添加一页

放图

添加图页

3.可以看到,刚刚放好的图形很乱,需要手工调整一下。装配图上双击,在properties侧边栏里可以修改缩放比例、标题、线条样式等。

详细配置

properties:ViewSide下拉菜单可以选择输出的时TOP还是Bottom的视图。

Displayholes选择padsonly

ComponentCaption选择Designator,同时把showsilkscreen勾上

showpads菜单下面两个勾勾上才能显示焊盘,点前面两个彩色小框可以自定义焊盘颜色。

ComponentDisplayProperties:在ComponentBody后面勾上,下拉菜单选择silkscreen

在Designator后面勾上,下拉菜单选择silkscreen

这样我们就已经把TOP层的装配图定义好了,Bottom层的设置也是类似这样。

4.完成以上步骤,保存之后就可以输出了。注意,这里的输出不是直接打印成PDF,而是使用导出功能。

保存文件之后在file菜单下面选择ExporttoPDF.输出后的PDF文件也支持文本搜索,非常方便。

输出

3.CadenceAllegro输出装配图

以Cadence16.6,4层板为例,采用Film的方法输出装配图:

PCB文件

1.创建TOP和Bottom装配图的film

选择Artwork(照相机图标),开始配置film文件。点击add添加两个Film,各自取名ADT、ADB。

选中原有的一个,然后右键add添加

添加菲林

2.点击菲林前面的“+“号展开,然后删掉(Cut)所有不需要的元素。

然后添加丝印、焊盘、板框。注意丝印层有好几个类型,根据需要添加。本例就添加了两个丝印类型。

Bottom需要勾选镜像

3.都加载完成之后点击OK,就可以进行输出了。从File里选择Export,选择PDF

弹出菜单里勾选ADT,ADB,下面再勾选fillpads,点击Export。此时就可以看到装配图已经输出完成。


编辑:hfy

收藏 人收藏
分享:

评论

相关推荐

PCB设计中常见的问题

在PCB设计中,工程师难免会面对诸多问题,一下总结了PCB设计中十大常见的问题,希望能对大家在PCB设计中能够起到一定的...
发表于 03-01 10:43 0次 阅读
PCB设计中常见的问题

工程师必备:硬件EMC设计规范

一、引言 广义的电磁兼容控制技术包括抑制干扰源的发射和提高干扰接收器的敏感度,我们都知道干扰源、干扰....
发表于 02-26 06:32 43次 阅读
工程师必备:硬件EMC设计规范

PCB设计要点

晶振电源电路原理图设计要点 PCB设计要点
发表于 02-25 08:25 0次 阅读
PCB设计要点

并行PCB设计有哪些准则?

本文总结了并行PCB设计各个阶段的关键准则。
发表于 02-24 08:36 0次 阅读
并行PCB设计有哪些准则?

PCB工程师手把手教你如何布局完美的PCB电路板

在开始新设计时,因为将大部分时间都花在了电路设计和元件的选择上,在PCB布局布线阶段往往会因为经验不足,考虑不够周全。 ...
发表于 02-20 07:00 908次 阅读
PCB工程师手把手教你如何布局完美的PCB电路板

开关电源与IC控制器PCB设计思路

我们电子产品往往60%以上-可靠性方面的问题都出现在电子线路板的PCB设计上;工作及性能良好的PCB需要相关的理论及实践经验...
发表于 02-20 07:00 1102次 阅读
开关电源与IC控制器PCB设计思路

教你一招:如何处理PCB设计阻抗无法连续的地方?

作为PCB设计工程师,大家都知道阻抗要连续。PCB设计也总有阻抗不能连续的时候,这时候该怎么办呢? 关于阻抗 先来澄清...
发表于 02-19 07:00 845次 阅读
教你一招:如何处理PCB设计阻抗无法连续的地方?

PCB设计中跨分割的处理

PCB设计中跨分割的处理 高速信号布线技巧
发表于 02-19 06:27 0次 阅读
PCB设计中跨分割的处理

pcb设计资料必看 48页

过节不忘发帖 pcb设计资料必看 48页 资料来自网络资源 ...
发表于 02-12 22:19 788次 阅读
pcb设计资料必看 48页

PCB设计中光绘文件的生成方法与步骤

PCB设计中光绘文件的生成经验分享。在PCB设计中在快点PCB平台看到光绘文件的生成的知识分享给大家。   生成光绘文...
发表于 02-05 18:01 228次 阅读
PCB设计中光绘文件的生成方法与步骤

PCB设计高手分享PCB设计十大经验技巧

  给大家分享一个在快点PCB学院看到的一篇经验总结;非常不错。 应该是一个PCB设计高手的分享。   1、PCB板各层的...
发表于 02-05 16:36 303次 阅读
PCB设计高手分享PCB设计十大经验技巧

PCB设计十大误区-绕不完的等长(一)

第一次听到“绕等长工程师”这个称号的时候,我和我的小伙伴们都惊呆了。每次在研讨会提起这个名词,很多人....
发表于 02-05 07:42 65次 阅读
PCB设计十大误区-绕不完的等长(一)

3种常见的PCB设计错误

作为所有电子设备不可或缺的一部分,世界上最流行的技术需要完善的PCB设计。但是,过程本身有时什么也没....
发表于 02-04 06:26 54次 阅读
3种常见的PCB设计错误

PCB设计中的热设计的规划

电子设备产生的热量使内部温度迅速上升,如果不及时将改热量散发,设备会继续升温,器件就会应为温度过热失....
发表于 02-04 06:03 38次 阅读
PCB设计中的热设计的规划

根据经验总结的PCB设计完成后需要检查的内容

1. 检查高频、 高速、 时钟及其他脆弱信号线, 是否回路面积最小、 是否远离干扰源、 是否有多余的....
发表于 02-01 07:09 52次 阅读
根据经验总结的PCB设计完成后需要检查的内容

关于射频电路的4种特性

本文,从射频界面、小的期望信号、大的干扰信号、相邻频道的干扰四个方面解读射频电路4大基础特性,并给出....
发表于 01-29 08:32 125次 阅读
关于射频电路的4种特性

PCB设计当中过孔的设计规范

过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。从设计....
发表于 01-29 06:25 97次 阅读
PCB设计当中过孔的设计规范

PCB拼版的九个步骤

在PCB做版图时,经常会需要用到拼版技巧。一般来说,可以用不同PCB板子拼,也可以是相同板子,特别适....
的头像 电子发烧友网 发表于 01-27 09:32 542次 阅读
PCB拼版的九个步骤

关于PCB设计,需要知道的几个EMI指南

下文是硬件工程师在PCB设计早期容易忽略,却很有用的几个EMI设计指南,这些指南也在一些权威书刊中常....
发表于 01-25 06:50 79次 阅读
关于PCB设计,需要知道的几个EMI指南

工程师在PCB设计时需要知道的EMI指南

完整的信号返回平面能有效减少高频信号环路的感抗,感抗越小,产生的噪声电压值也就越小,这就是为何要求在....
发表于 01-22 10:05 321次 阅读
工程师在PCB设计时需要知道的EMI指南

PCB设计中如何避免出现电磁问题?

在PCB设计中,电磁兼容性(EMC)及关联的电磁干扰(EMI)历来是让工程师们头疼的两大问题,特别是....
发表于 01-22 09:54 63次 阅读
PCB设计中如何避免出现电磁问题?

差分信号的原理及其在PCB设计的处理方法

差分线是 PCB 设计中非常重要的一部分信号线,信号处理要求也是相当严谨,今天为大家介绍下差分信号的....
发表于 01-21 07:44 83次 阅读
差分信号的原理及其在PCB设计的处理方法

EMC的PCB设计解析

设计具有良好EMC性能的电路的关键要素之一是PCB设计。好的PCB设计可使电路板在其EMC性能方面表....
发表于 01-06 11:19 396次 阅读
EMC的PCB设计解析

2021年1月即将实施的PCB行业新规与PCB行业税收优惠政策

CPCA盘点了2021年1月即将实施的PCB行业相关新规,望各会员单位及时关注并加强学习。 目录 1....
发表于 12-30 16:52 799次 阅读
2021年1月即将实施的PCB行业新规与PCB行业税收优惠政策

PCB设计阻抗不连续的解决办法

特性阻抗描述了信号沿传输线传播时所受到的瞬态阻抗,这是影响传输线电路中信号完整性的一个主要因素。
的头像 陈翠 发表于 12-27 09:55 696次 阅读
PCB设计阻抗不连续的解决办法

pcb设计心得体会 这不仅仅是PCB背板的问题

修改PCB背板不一定能解决这个信号质量不好的问题,主要是交换板和业务板本身的设计问题比较大造成的,而....
发表于 12-26 18:36 968次 阅读
pcb设计心得体会 这不仅仅是PCB背板的问题

学习高速电路设计,工程师需要掌握哪些知识技能呢

学习高速电路设计,工程师需要掌握哪些知识技能呢?下面以具体的七个技术面,为大家详细叙述一一解答: 0....
的头像 电子发烧友网 发表于 12-25 14:06 406次 阅读
学习高速电路设计,工程师需要掌握哪些知识技能呢

pcb过孔设计中设计电路时对过孔的处理原则 过孔阻抗设计要匹配生产能力

在高速PCB的设计中,过孔设计是一个重要因素,并且过孔设计已成为制约高速PCB设计的关键因素之一,如....
发表于 12-15 18:51 472次 阅读
pcb过孔设计中设计电路时对过孔的处理原则 过孔阻抗设计要匹配生产能力

四个方面解读射频电路4大基础特性

发射器有两个主要的PCB设计目标:第一是它们必须尽可能在消耗最少功率的情况下,发射特定的功率。第二是....
的头像 电源研发精英圈 发表于 12-07 14:54 612次 阅读
四个方面解读射频电路4大基础特性

浅谈PCB设计的DDR线宽和阻抗

点击上面蓝色字体,关注我们! PCB设计时DDR线宽和阻抗是如何确定下来的呢? 让我们通一个具体的项....
的头像 PCB线路板打样 发表于 12-07 12:23 870次 阅读
浅谈PCB设计的DDR线宽和阻抗

关于高速PCB设计的5个修改建议

高速PCB设计完成后,一般都要经过评审才会发出去做板。硬件组在评审的过程中,一般都会在各个方面给出修....
的头像 PCB线路板打样 发表于 12-07 11:49 429次 阅读
关于高速PCB设计的5个修改建议

如何利用脚本打印出PCB钻孔的信息

PCB设计完成后,如果我们要统计过孔数量,查看过孔信息怎么弄呢?可以利用脚本的方法,把PCB钻孔的信....
的头像 PCB线路板打样 发表于 12-04 10:02 454次 阅读
如何利用脚本打印出PCB钻孔的信息

PCB设计:元器件编号如何按顺序重新编排

设计原理图时,常常会遇到这样的问题。就是很多元器件的位号不是按顺序编号的,中间空了很多号没有用,有时....
的头像 PCB线路板打样 发表于 12-03 10:44 1270次 阅读
PCB设计:元器件编号如何按顺序重新编排

PCB设计:整理元器件位号的快捷技巧

PCB设计完成后,通常需要整理元器件的位号,然后输出贴片图给工厂贴片。因为没有整理的位号是参差不齐的....
的头像 PCB线路板打样 发表于 12-03 10:12 1448次 阅读
PCB设计:整理元器件位号的快捷技巧

高速PCB设计中过孔的重要性分析

增大焊盘会导致孔的容性增大,从而造成阻抗降低,增大焊盘的会导致信号的回损变差。所以说缩小过孔的焊盘能....
的头像 PCB线路板打样 发表于 12-02 09:56 962次 阅读
高速PCB设计中过孔的重要性分析

PCB设计误区:从过滤水的流程看电源滤波

从过滤水的流程来看电源滤波的指导思想,以及引出电源供电网络轨道PDN。本节没有列出新的设计误区,还是....
的头像 PCB线路板打样 发表于 12-02 09:42 1102次 阅读
PCB设计误区:从过滤水的流程看电源滤波

PCB设计元器件布局

PCB设计 在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会....
的头像 PCB线路板打样 发表于 12-02 09:26 987次 阅读
PCB设计元器件布局

PCB设计面临的挑战及主要关注点

随着电子、通信技术的飞速发展,今天的PCB设计面临的已经是与以往截然不同的、全新的挑战。主要表现在以....
的头像 PCB电路板设计 发表于 11-30 17:10 811次 阅读
PCB设计面临的挑战及主要关注点

在OrCAD中轻松创建并调整shape的操作步骤详解

文章来源:Cadence楷登PCB及封装资源中心 怎么在OrCAD中轻松创建并调整shape?操作步....
发表于 11-26 17:51 782次 阅读
在OrCAD中轻松创建并调整shape的操作步骤详解

这个案例的出错水平属于哪个段位呢?

公众号:高速先生 B站:一博科技(短视频分享技术干货) 作者:黄刚 众所周知,....
的头像 高速先生 发表于 11-23 11:46 507次 阅读
这个案例的出错水平属于哪个段位呢?

PCB设计过程中进行回流路径分析:高速信号回流路径

一般回流路径不连续问题常是由于缺少接地过孔Via、接地层中的间隙、缺少去耦电容,或是使用错误Net所....
发表于 11-20 18:26 1110次 阅读
PCB设计过程中进行回流路径分析:高速信号回流路径

PCB设计过程中需要特别注意的重要因素

基频的频宽决定了数据在系统中可流动的基本速率。基频是用来改善数据流的可靠度,并在特定的数据传输率之下....
的头像 电子发烧友网工程师 发表于 11-20 16:39 506次 阅读
PCB设计过程中需要特别注意的重要因素

高速PCB设计影响信号质量的5大问题

在高速PCB设计中,“信号”始终是工程师无法绕开的一个知识点。不管是在设计环节,还是在测试环节,信号....
的头像 PCB线路板打样 发表于 11-20 10:55 953次 阅读
高速PCB设计影响信号质量的5大问题

浅谈PCB设计DDR2布线中面临的困难

本文首先列出了DDR2布线中面临的困难,接着系统的讲述了DDR2电路板设计的具体方法,最后给出个人对....
的头像 PCB线路板打样 发表于 11-20 10:28 2321次 阅读
浅谈PCB设计DDR2布线中面临的困难

PCB设计中,如何选择电源芯片

作为一名硬件工程师,与各种芯片打交道是必然的事,今天,我们不妨就来说说工程师们的芯事之一:电源芯片的....
的头像 PCB线路板打样 发表于 11-20 10:06 1422次 阅读
PCB设计中,如何选择电源芯片

PCB的工艺流程你知道吗?

内层干膜包括内层贴膜、曝光显影、内层蚀刻等多道工序。内层贴膜就是在铜板表面贴上一层特殊的感光膜,就是....
的头像 凡亿PCB 发表于 11-20 09:11 706次 阅读
PCB的工艺流程你知道吗?

如何区分有源晶振与无源晶振?区别是什么?

转自 |EDA365电子论坛 在PCB设计中,晶振(晶体振荡器)是非常重要的电子元器件,相信大部分的....
的头像 strongerHuang 发表于 11-19 18:11 3399次 阅读
如何区分有源晶振与无源晶振?区别是什么?

镀铜短线柱(STUB)如何影响高速信号?

背钻其实就是一种特殊的控制钻孔深度的钻孔技术,在多层板的制作中,例如8层板的制作,我们需要将第1层连....
的头像 凡亿PCB 发表于 11-19 16:57 956次 阅读
镀铜短线柱(STUB)如何影响高速信号?

规则设置如何应用于我的PCB设计?

俗话说:“工欲善其事,必先利其器”,所以在考虑一个软硬结合板的设计及生产工艺时,做好充分的准备是非常....
的头像 凡亿PCB 发表于 11-19 16:49 570次 阅读
规则设置如何应用于我的PCB设计?

PCB加工的制造工艺有哪些精度方面的要求?

如下图所示为某家PCB制版生产厂家的工艺要求。包括电路板层数,厚度,孔径,最小线宽线距,铜厚等基本参....
的头像 凡亿PCB 发表于 11-19 16:39 959次 阅读
PCB加工的制造工艺有哪些精度方面的要求?

开始PCB设计之前要了解的事项

PCB层-层数越多,PCB的制造越复杂。(注意:即使单层PCB也可能是一个复杂的PCB,但在这里我们....
的头像 凡亿PCB 发表于 11-19 16:36 522次 阅读
开始PCB设计之前要了解的事项

IPC PCB清洁建议

污染物种类 IPC 列出了几种会影响 PCB 性能和使用寿命的污染物。根据 IPC ,必须使用对工人....
的头像 PCB打样 发表于 11-18 19:19 950次 阅读
IPC PCB清洁建议

PCB电子装配:板子建造的试验场

智能电路板构造处理 、 设计人员的意图,供应商的组件以及制造商的裸板与组装板之间的协调并非易事。这种....
的头像 PCB打样 发表于 11-18 19:19 774次 阅读
PCB电子装配:板子建造的试验场

在设计阶段降低组装成本的10种故障安全方法

在一个应用中,印刷电路板的成本对产品的整体价格有着巨大的影响。因此,重要的是纳入有助于减少此支出的所....
的头像 PCB打样 发表于 11-18 19:19 806次 阅读
在设计阶段降低组装成本的10种故障安全方法

PCB设计之电镀制作

厚化铜由于化学铜的厚度仅约20~30微吋,必须再做一次全板面的电镀铜才能进行下一工序的制作.
的头像 PCB线路板打样 发表于 11-18 09:49 827次 阅读
PCB设计之电镀制作

BOM在PCB组装中的重要性是什么

PCB 生产涉及多种原材料,需要在实际生产开始之前进行组装。如何确定 PCB 的原材料要求?物料清单....
的头像 PCB打样 发表于 11-17 18:56 947次 阅读
BOM在PCB组装中的重要性是什么

PCB组装过程中的步骤

PCB 组装是一个漫长的过程,涉及几个自动化和手动步骤。这些步骤中的每一个都必须通过最大程度地注意细....
的头像 PCB打样 发表于 11-17 18:56 1006次 阅读
PCB组装过程中的步骤

常见的PCB评分指南

v- 计分方法已经在印刷电路板( PCB )的生产中使用了很多年。随着 PCB 生产技术的飞速发展,....
的头像 PCB打样 发表于 11-17 18:56 816次 阅读
常见的PCB评分指南

使用散热膏创建的散热器示例

产生输出时,在散热器膏层中包含电路板轮廓。最好使用一条小线 - 例如0.50mm(20mil)宽 -....
的头像 汽车电子硬件设计 发表于 11-17 14:35 470次 阅读
使用散热膏创建的散热器示例

有许多方法可以降低PCB设计的EMI

在同一块板子上,无线数字信号经常会有较高的数字逻辑,例如高增益的RF电路
的头像 汽车电子硬件设计 发表于 11-17 14:28 610次 阅读
有许多方法可以降低PCB设计的EMI

AEDL-5XXX 高分辨率3通道外壳编码器模块套件,集成差分线路驱动器IC

Broadcom AEDL-5xxx是一系列高分辨率3通道封装编码器模块套件,集成了差分线路驱动器IC,支持RS-422输出。每个AEDL-5xxx套件包含一个AEDT-981x模块,一个胶片码盘和一个AM26C31Q线路驱动器IC,为每个编码器通道(即A,A /,B,B /,I和I /)提供互补输出。推荐的AEDL-5xxx线路接收器IC包括AM26LS32和AM26LS33。 AEDL-5xxx支持的标准编码分辨率为2000和5000 CPR。有关其他解决方案,请咨询当地Broadcom销售代表。 有关其他信息,请参阅: i)AEDT-981x数据表。 ii)AM26C31Q数据表 特性 具有索引脉冲输出的双通道正交输出 带有工业标准线路驱动器IC的互补输出 编码分辨率提高至+ 5000 CPR 工作温度范围为-40°C至+ 85°C 无需调整信号 快速轻松组装  具有成本效益的解决方案 小尺寸 单5V电源,具有±10%容差 板载去耦电容,增强抗噪能力 应用 AEDL-5xxx适用于广泛的商业和工业运动控制应用,包括:但不限于:   直流伺服电机 线性和旋转执行器 工厂自动化设备 3D打印ers 机器人技术 无人驾驶飞行器(UAV)或无人机    ...
发表于 07-04 12:31 72次 阅读
AEDL-5XXX 高分辨率3通道外壳编码器模块套件,集成差分线路驱动器IC

MC10E116 Quint差分线路接收器

/ 100E116是一款带有射极跟随器输出的五阶差分线路接收器。对于要求带宽大于E116的应用,可能会对E416器件感兴趣。 有源电流源加上MOSAIC III工艺的深度集电极特性为接收器提供了出色的共模噪声抑制。每个接收器都有一个专用的V CCO 电源引线,提供最佳的对称性和稳定性。 如果反相和非反相输入的电位均等于-2.5 V,则接收器没有达到规定的状态,而是以正常的差分放大器方式进行电流共享,在HIGH和LOW之间产生输出电压电平,或者器件甚至可以振荡。 V BB 引脚,内部产生的电源,仅适用于此器件。对于单端输入条件,未使用的差分输入连接到V BB 作为开关参考电压。 V BB 也可以重新连接AC耦合输入。使用时,通过0.01 F电容去耦V BB 和VCC,并限制电流源或吸收至0.5 mA。不使用时,V BB 应保持打开。 100系列包含温度补偿。 特性 500ps最大。传播延迟 V BB 供应输出 每个接收器的专用V CCO 引脚 PECL模式工作范围:V CC = 4.2 V至5.7 V,V EE = 0 V NECL模式工作范围:V CC = 0 V,V EE = -4.2 V至-5.7 V 输入Q s 在...
发表于 04-18 21:48 26次 阅读
MC10E116 Quint差分线路接收器

MC100EP116 差分线路接收器/驱动器

116 / 100EP116是一款基于EP16器件的6位差分线路接收器。高频输出提供的3.0GHz带宽使该器件非常适合缓冲超高速振荡器。 V BB 引脚,内部产生的电压源,可用于此仅限设备。对于单端输入条件,未使用的差分输入连接到V BB 作为开关参考电压。 V BB 也可以重新连接AC耦合输入。使用时,通过0.01uF电容去耦V BB 和V CC ,并将电流源或吸收限制在0.5 mA。不使用时,V BB 应保持开路。 该设计在器件内部集成了两级增益,使其成为高带宽放大器应用的理想选择。 差分输入具有内部钳位结构,这将强制栅极的Q输出在开路输入条件下进入低电平状态。因此,未使用的门的输入可以保持打开,并且不会影响设备其余部分的操作。请注意,只有当两个输入均低于V CC 2.5V时,输入钳位才会生效。 100系列包含温度补偿。 特性 260 ps典型传播延迟 最高频率> 3 GHz典型 PECL模式工作范围:V CC = 3.0 V至5.5 V,V EE = 0 V NECL模式工作范围:V CC = 0 V,V EE = -3.0 V至-5.5 V 打开输入默认状态 输入的安全钳位 Q输出打开或V EE 时输出默认...
发表于 04-18 21:00 47次 阅读
MC100EP116 差分线路接收器/驱动器

MC100E116 ECL Quint差分线路接收器

信息 MC10E / 100E116是一款带有射极跟随器输出的五阶差分线路接收器。对于要求带宽大于E116的应用,可能会对E416器件感兴趣。有源电流源加上MOSAIC III工艺的深度集电极特性可为接收器提供出色的共模噪声抑制。每个接收器都有一个专用的V 电源引线,提供最佳的对称性和稳定性。如果反相和非反相输入均为> -2.5 V的相等电位,则接收器不会进入定义状态,而是正常差分放大器方式的电流共享,在高电平和低电平之间产生输出电压电平,或者器件甚至可能振荡。 V 引脚,内部产生的电压源,仅适用于此器件。对于单端输入条件,未使用的差分输入连接到V 作为开关参考电压。 V 也可以重新连接AC耦合输入。使用时,通过0.01 F电容去耦V 和VCC,并限制电流源或吸收至0.5 mA。不使用时,V 应保持打开状态。 100系列包含温度补偿。 500ps Max。传播延迟 V 电源输出 专用V 每个接收器的引脚 PECL模式工作范围:V = 4.2 V至5.7 V,V = 0 V NECL模式工作范围:V = 0 V当V = -4.2 V至-5.7 V 输出Q 将在输入 内部输入下拉电阻时默认为低电平 符合或超过JEDEC规范EIA / JESD78 IC闩锁测试 ESD保护:...
发表于 04-18 20:51 29次 阅读
MC100E116 ECL Quint差分线路接收器

ADN4668 3 V LVDS 四通道CMOS差分线接收器

和特点 接收器输入引脚提供±15 kV ESD保护开关速率:400 Mbps(200 MHz)流通引脚配置简化印制电路板布线 通道到通道偏移:150 ps(典型值) 差分偏移:100 ps(典型值) 传播延迟:2.7 ns(最大值)电源电压:3.3 V断电时具有高阻抗输出低功耗设计(待机功耗典型值为3 mW)可与现有的5 V LVDS驱动器配合使用接收小摆幅(典型值310 mV )差分输入信号电平支持开路、短路,以及终止输入故障安全 产品详情 ADN4668是一款四通道CMOS低压差分信号(LVDS)线接收器,提供400 Mbps(200 MHz)以上的数据速率及超低功耗。ADN4668具有流通引脚配置,可以轻松实现印制电路板布线以及输入信号与输出信号的分离。这款器件接收低压(典型值310 mV)差分输入信号,并将其转换为单端3 V TTL/CMOS逻辑电平。ADN4668还提供高电平有效和低电平有效的启用/禁用输入(EN 和/EN),以控制全部的4个接收器。它们可禁用接收器,并将输出切换为高阻抗状态。这个高阻抗状态允许对一个或多个ADN4668的输出进行多路复用,以将待机功耗降低至3 mW(典型值)。ADN4668及与其配合使用的驱动器ADN4667,可为高速点对点数据传输提供全新的解决...
发表于 02-22 13:39 56次 阅读
ADN4668 3 V LVDS 四通道CMOS差分线接收器

ADN4662 单通道、3 V、CMOS、LVDS差分线路接收器

和特点 输入引脚提供±15 kV ESD保护转换速率:400 Mbps (200 MHz)直通式引脚排列可简化PCB布局传播延迟:2.5 ns(最大值)3.3 V 电源关断时为高阻抗输出与现有5 V LVDS驱动器兼容接受小摆幅(典型值310 mV)差分信号电平支持开路、短路和端接输入故障安全功能阈值区间:0 V至−100 mV符合TIA/EIA-644 LVDS标准工业温度范围:−40°C至+85°C 产品详情 ADN4662是一款单通道、CMOS、低压差分信号(LVDS)线路接收器,提供400 Mbps (200 MHz)以上的数据速率,功耗超低。它采用直通式引脚排列,便于PCB布局以及输入与输出信号分离。             该器件接受低压(典型值310 mV)差分输入信号,并将其转换为单端3 V TTL/ CMOS逻辑电平。ADN4662及其配套驱动器ADN4661为高速点对点数据传输提供一种新的解决方案,可以代替射极耦合逻辑(ECL)或正射极耦合逻辑(PECL),功耗则更低。              应用点对点数据传输多分支总线时钟分配网络背板接收器 方框图...
发表于 02-22 13:30 55次 阅读
ADN4662 单通道、3 V、CMOS、LVDS差分线路接收器

ADN4667 3 V LVDS四通道CMOS差分线驱动器

和特点 输出引脚提供±15 kV ESD(静电放电)保护开关速率:400 Mbps (200 MHz)流通引脚排列简化印制电路板(PCB)布线差分偏移:300 ps(典型值)差分偏移:400 ps(最大值)传播延迟:1.7 ns(最大值)电源电压:3.3 V 欲了解更多信息,请参考数据手册 产品详情 ADN4667是一款四通道CMOS低压差分信号(LVDS)线驱动器,提供400 Mbps以上的数据速率(200MHz)和超低功耗。它具有流通引脚,可以轻松实现印制电路板布局以及输入与输出信号的分离。 ADN4667接收低压TTL/CMOS逻辑信号,并将其转换为一个差分电流输出信号,来驱动双绞线等传输媒介,输出电流的典型值为±3.1 mA。传输信号在接收端的终端电阻上产生典型值为±310 mV的差分电压。然后再通过ADN4668等LVDS接收器转换为TTL/CMOS逻辑电平。ADN4667还提供高电平和低电平有效的使能/禁用输入(EN和/EN)。这些输入控制全部的4个驱动器,并在禁用状态关闭电流输出,以将待机功耗降低至10 mW(典型值)。ADN4667及与其配合使用的LVDS接收器ADN4668,可为高速点对点数据传输提供全新的解决方案,并为发射极耦合逻辑(ECL)或正电压射极耦合逻...
发表于 02-22 13:30 50次 阅读
ADN4667 3 V LVDS四通道CMOS差分线驱动器

ADN4664 双通道、3 V、CMOS、LVDS差分线路接收器

和特点 输出引脚提供±15 kV ESD保护转换速率:400 Mbps (200 MHz)直通式引脚排列可简化PCB布局通道间偏斜:100 ps(典型值)传播延迟:2.5 ns(最大值)3.3 V电源关断时为高阻抗输出低功耗:3 mW(静态典型值)与现有5 V LVDS驱动器兼容接受小摆幅(典型值310 mV)差分信号电平支持开路、短路和端接输入故障安全功能阈值区间:0 V至−100 mV 产品详情 ADN4664是一款双通道、CMOS、低压差分信号(LVDS)线路接收器,提供400 Mbps (200 MHz)以上的数据速率,功耗超低。它采用直通式引脚排列,便于PCB布局以及输入与输出信号分离。该器件接受低压(典型值310 mV)差分输入信号,并将其转换为单端3 V TTL/ CMOS逻辑电平。              ADN4664及其配套LVDS驱动器ADN4663为高速点对点数据传输提供一种新的解决方案,可以代替射极耦合逻辑(ECL)或正射极耦合逻辑(PECL),功耗则更低。          应用点对点数据传输多分支总线时钟分配网络背板接收器 方框图...
发表于 02-22 13:30 183次 阅读
ADN4664 双通道、3 V、CMOS、LVDS差分线路接收器

ADN4665 3 V、LVDS、四通道、CMOS差分线路驱动器

和特点 输出引脚提供±15 kV ESD保护转换速率:400 Mbps (200 MHz)差分偏斜:100 ps(典型值)差分偏斜:400 ps(最大值)传播延迟:2 ns(最大值)3.3 V电源差分信号:±350 mV低功耗:13 mW(典型值)与现有5 V LVDS接收器兼容关断时为高阻抗LVDS输出符合TIA/EIA-644 LVDS标准欲了解更多特性,请参考数据手册 产品详情 ADN4665是一款四通道、CMOS、低压差分信号(LVDS)线路驱动器,提供400 Mbps (200 MHz)以上的数据速率,功耗超低。     该器件接受低压TTL/CMOS逻辑信号,并将其转换成典型值为±3.5 mA的差分电流输出,以便驱动双绞线电缆等传输介质。所传输的信号在接收端的端接电阻上产生典型值为±350 mV的差分电压,然后由LVDS接收器将其转换为TTL/CMOS逻辑电平。     ADN4665还提供高电平有效和低电平有效使能/禁用输入(EN和EN)。这些输入控制所有四个驱动器,并在禁用状态下关闭电流输出,将静态功耗降至典型值10 mW。ADN4665为高速点对点数据传输提供一种新的解决方案,可以代替射极耦合逻辑(ECL)或正射极耦合逻辑(PECL),功耗则更低。         应用背板...
发表于 02-22 13:30 56次 阅读
ADN4665 3 V、LVDS、四通道、CMOS差分线路驱动器

SSM2141 高共模抑制差分线路接收器

和特点 High Common-Mode RejectionDC: 100 dB typ60 Hz: 100 dB typ20 kHz: 70 dB typ40 kHz: 62 dB typ Low Distortion: 0.001% typ Fast Slew Rate: 9.5 V/µs typ Wide Bandwidth: 3 MHz typ Low Cost Complements SSM2142 Differential Line Driver产品详情 SSM2141是一款集成式差分放大器,用于接收平衡线路输入,适合要求高抗扰度和最佳共模抑制的音频应用。该器件的共模抑制(CMR)性能通常可以达到100 dB,而利用四个现有精密电阻的运算放大器实施方案,通常共模抑制只能达到40 dB,不能满足高性能音频的要求。SSM2141通过保持9.5 V/µs的高压摆率和高开环增益来实现低失真性能。在整个音频带宽内,其失真低于0.002%。SSM2141与平衡线路驱动器SSM2142互为补充。这些器件组合在一起可构成一个完全集成的解决方案,能够实现音频信号的等效变压器平衡,而不会有失真、电磁辐射(EMI)场和高成本等问题。SSM2141的其它应用包括信号求和、差分前置放大器和600 Ω低失真缓冲放大器。如需增益G = 1/2的类似性能器件,请参考SSM2143。 方框图...
发表于 02-22 13:08 189次 阅读
SSM2141 高共模抑制差分线路接收器

SSM2143 -6 dB 差分线路接收器

和特点 高共模抑制 DC: 90 dB(典型值) 60 Hz: 90 dB(典型值) 20 kHz: 85 dB(典型值) 超低总谐波失真(THD): 0.0006%(典型值,1 kHz) 快速压摆率: 10 V/ms(典型值) 宽带宽: 7 MHz(典型值,G = 1/2) 提供两个增益级: G = 1/2或2 低成本 产品详情 SSM2143是一款集成式差分放大器,用于接收平衡线路输入,适合要求对共模噪声有高抗扰度的音频应用。该器件通过对电阻进行激光调整,使之达到优于0.005%的精度,从而实现典型值为90 dB的共模抑制(CMR)。                                    该器件的其它特性包括10 V/µs的压摆率和宽带宽。在整个音频频段内,总谐波失真(THD)低于0.004%,即使驱动低阻抗负载时也是如此。SSM2143输入级设计用于处理高达+28 dBu的输入信号(G = 1/2)。虽然该器件主要针对G = 1/2的应用,但通过反接+IN/-IN和SENSE/REFERENCE,也可以实现2倍增益。采用增益为1/2的配置时,SSM2143与平衡线路驱动器SSM2142可提供全集成式单位增益解决方案,能够在长电缆上驱动音频信号。如需增益G = 1的类似性能器件,请参考SSM2141。 方...
发表于 02-22 13:08 58次 阅读
SSM2143 -6 dB 差分线路接收器

ADN4666 3 V、LVDS、四通道、CMOS差分线路接收器

和特点 接收器输入引脚提供±8 kV ESD IEC 61000-4-2接触放电保护 转换速率:400 Mbps (200 MHz) 通道间偏斜:100 ps(典型值) 差分偏斜:100 ps(典型值) 传播延迟:3.3 ns(最大值) 3.3 V 电源 关断时为高阻抗输出 欲了解更多特性,请参考数据手册。产品详情 ADN4666是一款四通道、CMOS、低压差分信号(LVDS)线路接收器,提供400 Mbps (200 MHz)以上的数据速率,功耗超低。     该器件接受低压(典型值350 mV)差分输入信号,并将其转换为单端3 V TTL/ CMOS逻辑电平。       ADN4666还提供高电平有效和低电平有效使能/禁用输入(EN和EN),用来控制所有四个接收器。这些输入可禁用接收器,将输出切换至高阻抗状态。因此,一个或多个ADN4666器件的输出可以多路复用,将静态功耗降至典型值10 mW。    ADN4666及其配套驱动器ADN4665为高速点对点数据传输提供一种新的解决方案,可以代替射极耦合逻辑(ECL)或正射极耦合逻辑(PECL),功耗则更低。   应用点对点数据传输多分支总线时钟分配网络背板接收器 方框图...
发表于 02-22 12:02 225次 阅读
ADN4666 3 V、LVDS、四通道、CMOS差分线路接收器

INA1651 SoundPlus™™ 高共模抑制、低失真差分线路接收器

INA1650(双通道)和INA1651(单通道)SoundPlus™音频线路接收器可实现91dB的超高共模抑制比(CMRR),同时对于22dBu信号电平可在1kHz时保持-120dB的超低THD + N.片上电阻器的高精度匹配特性为INA165x器件提供了出色的CMRR性能。这些电阻器具有远远优于外部组件的匹配特性,并且不受印刷电路板(PCB)布局所导致的失配问题的影响。不同于其他线路接收器产品,INA165x CMRR在额定温度范围内能保持特性不变,经生产测试可在各种应用中提供始终如一的性能。 INA165x器件支持±2.25V到±18V的宽电源电压范围,电源电流为10.5mA。除线路接收器通道之外,INA165x器件还包含一个缓冲的中间电压基准输出,因此可将其配置为用于双电源或单电源应用。中间电源输出可用作信号链中其他模拟电路的偏置电压。这些器件的额定温度范围为-40°C至125°C。 特性 高共模抑制: 91dB(典型值) 高输入阻抗:1MΩ差分 超低噪声:-104.7dBu,未加权 超低总谐波失真+噪声: -120dB THD + N(22dBu,22kHz带宽) 高带宽:2.7MHz 低静态电流:6mA(INA1651,典型值) 短路保护 集成电磁干扰(EMI)滤波器 宽电源电压...
发表于 01-08 17:51 138次 阅读
INA1651 SoundPlus™™ 高共模抑制、低失真差分线路接收器

INA1650 INA1650 SoundPlus™ 高共模抑制、低失真差分线路接收器

INA1650 SoundPlus音频线路接收器可实现91dB的极高共模抑制比(CMRR),同时对于22dBu信号电平,可在1kHz下保持-120dB的超低THD + N.INA1650这种优异的CMRR性能通过精确匹配片上电阻来实现,与外部组件相比,可提供更加卓越的匹配能力,并且不受印刷电路板(PCB)布局布线引入的不匹配干扰。不同于其他线路接收器产品,INA1650 CMRR在额定温度范围内能保持特性,经生产测试可在各种应用中提供始终如一的性能。 INA1650支持±2.25 V到±18V的宽电源电压范围,电源电流仅为10.5mA.INA1650除了两个线路接收器通道外,还包括一个缓冲的中间电压基准输出,允许将其配置用于双电源或单电源应用。中间电源输出可用作信号链中其他模拟电路的偏置电压。 INA1650具备独特的内部布局,即使在过驱或过载条件下也可在通道间实现最低串扰和零交互。此器件的额定温度介于-40°C至+ 125°C之间。 特性 高共模抑制: 91dB(典型值) 高输入阻抗:1MΩ差分 超低噪声:-104.7dBu,未加权 超低总谐波失真+噪声: -120dB THD + N(22dBu,22kHz带宽) 高带宽:2.7MHz 低静态电流:10.5mA(典型值) 短路保护 集成...
发表于 11-02 19:34 40次 阅读
INA1650 INA1650 SoundPlus™ 高共模抑制、低失真差分线路接收器

SN65LBC175A-EP 四路 RS-485 差分线路接收器

SN65LBC175A-EP是一款具有三态输出的四通道差分线路接收器,专为TIA /EIA-485(RS-485),TIA /EIA-422(RS-422)和ISO 8482(Euro RS-485)应用而设计。 当数据速率高达甚至超过5000bps时,该器件针对均衡后的多点总线通信进行了优化。传输介质可采用双绞线电缆,印刷电路板走线或背板。最终数据传输速率和距离取决于介质衰减特性和环境噪声耦合。 接收器的正负共模输入电压范围较大,具有6kV ESD保护,非常适用于极端环境下的多点高速数据传输应用。这些器件通过LinBiCMOS进行设计,兼具低功耗特性和极强稳定性。 两个EN输入可实现成对的使能控制,也可在外部将二者连接在一起,用相同的信号使能全部四个驱动器。 特性 专为TIA /EIA-485,TIA /EIA-422和ISO 8482应用而设计 信号传输速率线路的信号传输速率是指每秒钟的电压转换次数,单位为bps(每秒比特数)。超出50Mbps 在总线短路,开路和空闲总线条件下提供故障保护 为总线输入提供的静电放电(ESD)保护电压超过6kV 共模总线电压输入范围:-7V至12V 传播延迟时间< ; 18ns 低待机流耗:< 32μA 针对MC3486,DS96F1...
发表于 11-02 19:02 38次 阅读
SN65LBC175A-EP 四路 RS-485 差分线路接收器

SN65LBC180-Q1 汽车类低功耗差分线路驱动器和接收器对

SN65LBC180差分驱动器和接收器对是一种单片集成电路,设计用于通过长电缆进行双向数据通信,具有传输线的特性。它是一种平衡或差分电压模式设备,符合或超过行业标准ANSI RS-485和ISO 8482:1987(E)的要求。该器件采用TI的专有LinBiCMOS设计? CMOS低功耗以及同一电路中双极晶体管的精度和稳健性。 SN65LBC180将差分线路驱动器和接收器与3态输出相结合,采用5 V单电源供电。驱动器和接收器分别具有高电平有效和低电平有效使能,可以在外部连接以用作方向控制。驱动器差分输出和接收器差分输入连接到单独的端子以进行全双工操作,并设计为向总线提供最小负载,无论是禁用还是断电(V CC = 0)。该器件具有宽共模电压范围,适用于点对点或多点数据总线应用。 该器件还提供正负输出电流限制和热关断,以防止出现问题。线路故障情况。线路驱动器在结温约为172°C时关闭。 特性 汽车应用合格 专为通过长电缆传输高速多点数据而设计 使用脉冲持续时间低至30 ns 低电源电流。 。 。 5 mA Max 达到或超过ANSI标准RS-485和ISO 8482:1987(E)的要求 派对线总线的三态输出 < li>共模电压范围-7 V至12 V 热...
发表于 10-16 11:16 26次 阅读
SN65LBC180-Q1 汽车类低功耗差分线路驱动器和接收器对

FPC202 采用扩展 I/O 的双端口控制器

FPC202 双端口控制器用作低速信号聚合器,适用于 SFP、QSFP 和 Mini-SAS HD 等通用端口类型。FPC202 能够跨两个端口聚合所有低速控制和 I2C 信号,并为主机提供一个易于使用的管理接口(I2C 或 SPI)。可以在高端口数情形中使用多个 FPC202 应用 中使用多个 FPC402,通过一个公共控制接口连接到主机。FPC202 所采用的设计允许将其放置在 PCB 底部、压合连接器下方,由此可简化布线。凭借这种本地控制端口低速信号的方法,可以使用 I/O 数更少的控制器件(FPGA、CPLD 和 MCU)并减少布线层拥塞,从而降低系统物料清单 (BOM) 成本。FPC202 能够与标准的 SFF-8431、SFF-8436 和 SFF-8449 低速管理接口(包括连接每个端口的专用 100/400kHz I2C 接口)兼容。该器件还提供有其他通用引脚来驱动端口状态 LED 或控制电源开关。LED 驱动器 具有 可编程闪烁和调光等便捷功能。连接主机控制器的接口可在 1.8V 至 3.3V 的单独电源电压下运行,以支持低压 I/O。对于每个端口,FPC202 总共具有四个 LED 驱动器、12 个通用 I/O 和两个下行 I2C 总线。这组扩展的 I/O 允许控制系统内的其...
发表于 10-16 11:16 40次 阅读
FPC202 采用扩展 I/O 的双端口控制器

FPC401 四端口控制器

FPC401四端口控制器用作低速信号聚合器,适用于SFP +,QSFP +和SAS等通用端口类型.FPC401能够跨四端口聚合所有低速控制和I2C信号,并为主机提供了一个方便使用的管理接口(I2C或SPI)。对于高端口数应用来说,可以搭配使用多个FPC401,而且同样能够为主机提供一个公共控制接口.FPC401所采用的设计允许放置在PCB底部的压合连接器下,这样方便布线。凭借这种本地控制端口低速信号的方法,可以使用IO数更少的控制器件(FPGA,CPLD,MCU)并减少布线层拥塞,从而降低系统物料清单(BOM)成本。 特性 支持跨四个端口进行控制信号管理和I2C聚合 结合多个FPC401可通过一个主机接口控制56个端口 无需使用分立式I2C多路复用器,LED驱动器和高引脚计数现场可编程门阵列(FPGA)/复杂可编程逻辑器件(CPLD)控制器件 通过处理接近端口的全部低速控制信号来降低PCB布线复杂性 可选I2C(高达1MHz)或SPI(高达10MHz)主机控制接口 从模块中自动预取用户指定的重要数据 单端口和多端口读/写延迟短:SPI模式&lt;50μs,I2C模式&lt;400μs 广播模式允许对所有FPC401控制器的全部端口...
发表于 10-16 11:16 21次 阅读
FPC401 四端口控制器

FPC402 FPC402 四端口控制器

FPC402四端口控制器用作低速信号聚合器,适用于SFP,QSFP和Mini-SAS HD等通用端口类型.FPC402能够跨四个端口聚合所有低速控制和I2C信号,并为主机提供一个易于使用的管理接口(I2C或SPI)。您可以在高端口数应用中使用多个FPC402,通过一个公共控制接口连接到主机.FPC402所采用的设计允许放置在PCB底部,压合连接器下方,这样可以简化布线。凭借这种对端口中低速信号的本地控制方法,可以使用IO数更少的控制器件(FPGA,CPLD和MCU)并减少布线层拥塞,从而降低系统BOM成本。 FPC402能够与标准的SFF-8431,SFF-8436和SFF-8449低速管理接口(包括连接每个端口的专用100 /400kHz I2C接口)兼容。该器件还提供有其他通用引脚来驱动端口状态LED或控制电源开关.LED驱动器具有可编程闪烁和调光等便捷功能。连接主机制器的接口可以在1.8V至3.3V的单独电源电压下运行,以支持低压I /O. FPC402可以从每个模块中用户指定的寄存器中预取数据,这样方便主机通过一个快速I2C(速度高达1MHz)或SPI(速度高达10MHz)接口来访问数据。此外,当发生与受控端口相关联的用户可配置关键事件...
发表于 10-16 11:16 42次 阅读
FPC402 FPC402 四端口控制器

SN75116 差分线路收发器

这些集成电路设计用于TTL型数字系统和差分数据传输线之间的接口。它们对于派对线(数据总线)应用特别有用。这些电路类型中的每一种都在一个封装中组合了一个三态差分线路驱动器和一个差分输入线路接收器,两者都采用单个5V电源供电。驱动器输入和接收器输出兼容TTL。采用的驱动器类似于SN55113和SN75113三态线路驱动器,接收器类似于SN55115和SN75115线路接收器。 SN55116,SN75116和SN75118提供SN55113和SN75113驱动器以及SN55115和SN75115接收器的所有功能。驱动器在使能时执行双输入AND和NAND功能,或者在处于禁用状态时为负载提供高阻抗。驱动器输出级类似于TTL图腾柱输出,但是电流吸收部分与电流源部分分离,并且两者都被引出到相邻的封装端子。此功能允许用户选择在集电极开路输出配置中使用驱动器,或者通过将相邻的源和宿端子连接在一起,在正常的图腾柱输出配置中使用驱动器。 SN55116,SN75116和SN75118的接收器部分采用差分输入电路,共模电压范围为±15 V.内部130- 等效电阻,可选择用于端接传输线。频率响应控制端子允许用户降低接收器的速度或改善差分噪声抗扰度。 SN55116和SN75116的接收器具...
发表于 10-16 11:16 82次 阅读
SN75116 差分线路收发器