0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

浅谈串扰溯源,串扰是怎么产生的

电子设计 来源:一博科技 作者:姜杰 2021-03-29 10:26 次阅读

炯炯有神的眼图突然塌陷,通道中出现诡异误码,致命振铃,为何突然浮现?是谁让信号质量一落千丈?是神秘的诅咒,还是无法逃脱的宿命?恐怖变化的背后究竟隐藏着什么惊人的秘密?!更多内容,欢迎来到本期文章——串扰溯源。

提到串扰,防不胜防,令人烦恼。不考虑串扰,仿真波形似乎一切正常,考虑了串扰,信号质量可能就让人不忍直视了,于是就出现了开头那惊悚的一幕。下面就来说说串扰是怎么产生的。

所谓串扰,是指有害信号从一个传输线耦合到毗邻传输线的现象,噪声源(攻击信号)所在的信号网络称为动态线,被干扰的信号网络称为静态线。串扰产生的过程,从电路的角度分析,是由相邻传输线之间的电场(容性)耦合和磁场(感性)耦合引起,需要注意的是串扰不仅仅存在于信号路径,还与返回路径密切相关。

以两条存在耦合的均匀微带线为例,假设耦合线传输时延远大于信号前沿的空间延伸,先来看看容性耦合噪声的产生过程。相信看过前面两期电容专题文章的各位应该还记得,相邻的两个导体(传输线也不例外)会组成电容,在攻击信号(简化为线性的上升沿)空间延伸区域,变化的电压将产生耦合电流流入静态线。

为了方便分析,将传输线简化为一系列电容。由于耦合电流在静态线上各方向感受到的阻抗相同,于是兵分两路,分别往前、后两个方向等量传播。如下图示,红色为后向电流,流向近端;绿色为前向电流,流向远端,与动态线上攻击信号的传输方向一致。

46-03.png

开始阶段,动态线上攻击信号入射,静态线的近端会同步产生容性耦合电流,即静态线的近端串扰与攻击信号同时产生,从0逐步增加,与此同时,耦合产生的前向电流还未到达远端,所以没有远端串扰产生。攻击信号沿动态线继续传播,上升沿区域产生的后向电流持续流回近端,当上升沿传输一个饱和长度后,近端电流达到稳定值,前向电流与攻击信号继续向远端传播。当攻击信号到达远端端接电阻后,远端串扰噪声同时到达并持续时间RT,此后,虽然不再产生新的耦合电流噪声,但静态线信号路径上仍未到达近端的后向电流还在继续返程之旅,持续时间与传输线时延TD一致,然后下降至0。由于静态线上的容性耦合电流是从信号路径流到返回路径,所以在近端和远端的端接电阻器上均产生正向的电压。

感性耦合的分析思路与容性耦合类似,由于两条耦合传输线之间存在互感,在攻击信号上升沿区域,变化的电流在静态线上产生感应电动势,进而形成感性耦合电流。

分析感性耦合过程的难点在于确定耦合电流的方向,关键是理解楞次定律:“感应电流的磁场总要阻碍引起感应电流的磁通量的变化”,即感应电流的效果总是反抗引起它的原因。好吧,听起来有点拗口,我再重复一遍:吃葡萄不吐葡萄皮,不吃葡萄倒吐葡萄皮。如下图所示,动态线上攻击信号的电流回路是顺时针的,那么在静态线上产生的感应电流的回路将是逆时针的。

回到传输线的零阶模型,简化为一系列的电感。如下图示,红色为后向电流回路,由静态线信号路径流到返回路径,绿色为前向电流回路,从返回路径流到信号路径。前向移动时,感性耦合噪声与攻击信号同步,并且在每一步都会耦合出更多的噪声电流,远端噪声随着耦合长度增加而增大。

46-06.png

尽管分析串扰现象的时候我们从容性耦合与感性耦合两个方面分开讨论,但实际上两种耦合是同时发生的。近端感性噪声电流与容性噪声电流的特征类似,方向相同,所以近端的容性噪声和感性耦合噪声相叠加,远端的容性噪声和感性噪声方向相反,净噪声是二者之差,最终呈现的形式如下:

46-07.png

近端串扰电压幅值:

46-08.png

远端串扰电压幅值:

46-09.png

其中,Vinput表示动态线上攻击信号电压,CmL和LmL分别表示耦合线单位长度的互容和互感;CL和LL表示信号路径上单位长度的自容和自感,存在于信号路径与回流路径之间;Len表示走线长度;v表示信号传播速度;RT表示信号上升时间。

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 耦合
    +关注

    关注

    13

    文章

    558

    浏览量

    100323
  • 传输线
    +关注

    关注

    0

    文章

    354

    浏览量

    23765
  • 串扰
    +关注

    关注

    4

    文章

    183

    浏览量

    26786
收藏 人收藏

    评论

    相关推荐

    近端&远端

    前端
    信号完整性学习之路
    发布于 :2022年03月02日 11:41:28

    PCB设计与-真实世界的(下)

    作者:一博科技SI工程师陈德恒3. 仿真实例在ADS软件中构建如下电路: 图2图2为微带线的近端仿真图,经过Allegro中的Transmission line Calculators软件对其叠
    发表于 10-21 09:52

    PCB设计与-真实世界的(上)

    作者:一博科技SI工程师陈德恒摘要:随着电子设计领域的高速发展,产品越来越小,速率越来越高,信号完整性越来越成为一个硬件工程师需要考虑的问题。,阻抗匹配等词汇也成为了硬件工程师的口头禅。电路板
    发表于 10-21 09:53

    原创|SI问题之

    原创|高速SI培训1.信号的成因(Crosstalk),顾名思义、是指不同信号互连链路之间的相互干扰。对于传输线而言,即能量从一条传输线耦合到另一条传输线上,当不同传输线
    发表于 10-10 18:00

    PCB设计中避免的方法

      变化的信号(例如阶跃信号)沿传输线由A到B传播,传输线C-D上会产生耦合信号,变化的信号一旦结束也就是信号恢复到稳定的直流电平时,耦合信号也就不存在了,因此仅发生在信号跳变的过程当中,并且
    发表于 08-29 10:28

    介绍

    模式2所产生的噪声电压Vn。R为电阻,C为电容,M为互感,Vs为噪声源电压,Is为噪声源电流。在这里请记住,平行的布线间会发生。顺便提一下,如果布线是正交结构,则杂散电容和互感都会显著减少。关键
    发表于 11-29 14:29

    什么是

    模式2所产生的噪声电压Vn。R为电阻,C为电容,M为互感,Vs为噪声源电压,Is为噪声源电流。在这里请记住,平行的布线间会发生。顺便提一下,如果布线是正交结构,则杂散电容和互感都会显著减少。关键
    发表于 03-21 06:20

    之耦合的方式

    是信号完整性中最基本的现象之一,在板上走线密度很高时的影响尤其严重。我们知道,线性无缘系统满足叠加定理,如果受害线上有信号的传输,
    发表于 05-31 06:03

    溯源是什么?

    所谓,是指有害信号从一个传输线耦合到毗邻传输线的现象,噪声源(攻击信号)所在的信号网络称为动态线,***的信号网络称为静态线。
    发表于 08-02 08:28

    PCB设计中,如何避免

    变化的信号(例如阶跃信号)沿传输线由A到B传播,传输线C-D上会产生耦合信号,变化的信号一旦结束也就是信号恢复到稳定的直流电平时,耦合信号也就不存在了,因此仅发生在信号跳变的过程当中,并且信号
    发表于 06-13 11:59

    高速差分过孔产生情况仿真分析

    可以采用背钻的方式。图1:高速差分过孔产生的情况(H》100mil, S=31.5mil )差分过孔间的仿真分析下面是对一个板厚为3
    发表于 08-04 10:16

    什么是

    什么是?互感和互容电感和电容矩阵引起的噪声
    发表于 02-05 07:18

    什么是

    的概念是什么?到底什么是
    发表于 03-05 07:54

    高速数字系统的问题怎么解决?

    问题产生的机理是什么高速数字系统的问题怎么解决?
    发表于 04-25 08:56

    互相产生的原因?

    多了,这样我想有个问题就是,在正常采集时,这几个通道间会不会有互相的问题。谢谢。 另外我想知道互相产生原因,如果能成放大器内部解释
    发表于 11-21 08:15