0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

设计一个信号又好长得又好看的5G手机天线到底有多难???

iIeQ_mwrfnet 来源:5G新技术 2020-06-08 14:25 次阅读

2020年下半年 iPhone(暂命名为iPhone 12)的天线设计将由苹果自主设计,究其原因在于苹果对高通提供的5G天线模块不满,使得iPhone的机身尺寸不能被苹果所接受。

此消息一爆出,果粉开始“沸腾”,纷纷表示苹果这次终于“硬气”了一次。但是自己设计天线并不是一件容易的事情,可以说这是苹果的软肋,早在iPhone4的时代,就曾因为天线设计导致用户如果握持角度不准确的话,信号会出现衰减的情况,而这次苹果自己设计天线,不免让很多人为之担心。想要设计一个信号又好长得又好看的5G手机天线到底有多难???

从大哥大到全面屏

在3G和4G时代,Modem(调制解调器,又称基带)是决定手机网络性能的核心元件。到了5G时代,射频(电路)与天线(设计)将进一步成为与Modem并列的核心,且更加考验手机厂商的研发实力。

所谓“射频电路”即手机内部接收通路、发射通路和本振电路组合的统称。

而天线设计是手机的重中之重,它将影响手机能支持多少频段以及可以实现的最高上/下行速率。天线的工作原理是通过电场和磁场的相互转换,完成电磁能量的辐射和接收。除了2G、3G、4G乃至5G移动通讯信号以外,Wi-Fi蓝牙、GPS、NFC无线充电(线圈)等功能同样需要天线来作为接收和发送信号的载体。

随着手机越来越薄、屏占比越来越高,想在有限的空间里让这些用途不同的天线和睦相处并非易事。因此,在了解5G对天线提出的新要求之前,咱们不妨先来回顾一下智能手机天线在这些年的变化。

功能机时代

从手机诞生以来,通信频率在逐渐从最初的kHz发展到了GHz频段,而天线的尺寸也经历了从大到小,从外置到内置的变化。

最早的手机天线是四分之一波长天线,它是一根单独的天线,也叫做套筒式偶极天线。

由于最早的1G手机频段为800MHz,所以天线的长度有9.4cm。这种天线在目前使用的手机上很难见到,而是被大量的用在无线LAN接入点上。

20世纪90年代的2G手机天线则有两个天线单极和螺旋,只能支持单个频段。诺基亚1011和摩托罗拉M300只能支持单个频段的通信。

1997年,摩托罗拉发布了首个双频GSM手机mr601,可以支持GSM900和GSM1800双频,因此有螺旋和鞭状两根天线。

1999年诺基亚推出了Nokia 3210,是一个完全内置的天线,可以支持GSM900和GSM1800双频。它首次在手机领域引入了内置天线设计,并一直延续至今。

此后从功能机再到如今的最新智能手机,其内置天线的材料、位置和工艺都出现了质的变化。

智能机时代

以iPhone 1为代表的早期智能手机大都采用了名为“FPC”(Flexible PrintedCircuits,柔性电路板)的内置天线工艺,它是一种可靠性很高、轻薄、弯折性好的印刷电路板。如今还有不少手机的NFC天线依旧采用FPC工艺。

早期智能手机为了提升档次,都进行了金属中框的尝试。在iPhone 4时代,苹果开始引入不锈钢材质的金属边框,结合前后玻璃面板堪称同期手机中的“颜值担当”。但iPhone 4的天线设计比较奇葩,它在金属边框内焊接了形状复杂的金属片,从而让边框充当了天线的作用。

但金属材质对信号有着极强的屏蔽作用,iPhone4为了让各种信号能透过金属边框,还特意在边框上开了2道缝隙(两段式方案)用于信号的溢出。

然而,这种设计依旧存在严重的Bug——当紧握手机下部时,可能引起两段式天线的连接处发生短路,从而导致信号质量严重缩水,这个问题在当年被称为“死亡之握”。

在智能手机热衷引入金属材质,以及手机机身越加轻薄之际,FPC工艺天线在性能和可靠性上都很难符合要求,此时另一种LDS(Laser DirectStructuring,激光直接成型)的内置天线工艺就浮出了水面。

LDS就是一种可以在塑料材质上进行化镀并形成金属天线图案的技术,它比FPC的精度更高,稳定性更好,可以直接在金属(或玻璃)后盖内层的塑料支架上镀上各种天线图案,从而大大节约手机内部空间,并可防止内部器件相互干扰。

当智能手机步入全面屏时代后,众多新品开始追求“屏占比”这一参数,至此全面屏手机纷纷展开了“额头”和“下巴”边框的“歼灭战”。

5G天线设计的难点

1)全球5G频谱分布不一

在谈具体难点之前,先看一下5G时代的频谱分布。在Sub-6Ghz频谱下,全球主要城市和地区的频谱分布。例如中国大部分聚焦在n78和n79,欧盟是n78,韩国也是n78。美国则一开始关注毫米波,到后面才有Sub-6G的布局。

日本的频段比较麻烦,他们是3.6Ghz到4.1Ghz的n77频段,这跟其他家不一样,如果手机要覆盖这个频率,那么天线的设计也不会太容易。

进一步分析,韩国的频谱比较确定,在3.4Ghz到3.7Ghz之间,运营商也基本落实在LG、KT和SKT。美国则聚焦在band 48的部分。中国电信和中国联通则主要聚焦在3.4Ghz到3.6Ghz的频段,而中国移动则聚焦在4.8Ghz到4.9Ghz的频段。

在日本这边,他们的n77与其他国家的有点不一样,包括NTT、KDDI、RAKU、SB和KDDI在内的运营商也都聚焦在3.6Ghz到4.1Ghz频段。另外,NTT还有个n79频段(4.5Ghz到4.6Ghz),因此如果你要在一个设备上同时支持中国和日本的频段,同时加上日本的一些运营商要求到年底前,所有设备都必须同时支持n77和n79频段。那么这将就意味着给天线带来非常大的挑战。

在b41的频段,根据规定本来b41谈的是2496Mhz和2690Mhz的频段,而中国本来的频谱分布是中国移动占据2575Mhz到2635Mhz,中国联通则占有2555Mhz到2575Mhz频段,中国电信则是2635Mhz到2655Mhz的频段。但现在中国电信和中国联通都把这两个频段给了中国移动,在交换完成了之后,现在的中国移动拥有了2515Mhz到2675Mhz共160Mhz带宽的频段,几乎掌控了整个b 41的频段。

作为交换,中国移动则把n78频段给了中国联通和中国电信。

从上图可以看到,如果想支持除了美国以外的国家的频段,只需要选择一个160Mhz、支持b41的滤波器就行了。但是如果还需要同时支持美国,尤其是Sprint(因为后者的b41的频率范围为2496Mhz到2690Mhz的194Mhz的带宽),这就需要工程师在设计天线的时候多加考虑了。

2)频段越高,传输衰减越大

如今智能机中的天线,是机身内部的一根根小金属片。移动数据需要天线,蓝牙功能需要天线、GPS也需要天线。

不同天线长度也不相同。这主要涉及到信号的频段与波长。频段越高,波长越短,天线也就越短(大概为波长的1/4)。

就国内来说,5G一共分有低频与高频两个频段。低频频段为3~5Ghz,和现在4G频段相差不多,天线可以沿用当下的设计。但是,为了满足5G的传输速率要求,必须提高天线的数量。

MIMO(多输入多输出)多天线技术就此登场。MIMO技术简单来说,1x1 MIMO就是1根发射天线与1根接收天线, 4x4 MIMO就是4根发射天线与4根接收天线。相比较而言,4x4 MIMO在传输速率上遥遥领先于1x1 MIMO。

低频频段使用MIMO多天线技术就能够解决问题,但在高频频段却远远不行。如上文所说,频率越高,波长越短,传输衰减就越大。在5G高频频段,通信波长只有10mm左右(毫米波)。5G创业公司Movindi的研发人员表示,手指、人脸在5G毫米波天线前会产生“临近效应”。不仅会导致信号下降,甚至可能会直接屏蔽信号,死亡之握的概率大大提升。

3)全面屏增加天线设计难度

如今流行的全面屏设计将会成为5G时代天线设计的最大挑战。一般来说,手机中的天线是360°全方位辐射的,因此在其附近的一定范围内是要避免出现金属的,这个范围就是“净空区”。

过往天线的净空区往往放在“下巴”上。然而,全面屏设计大大压缩了“下巴”的面积,一整块具有金属材质的屏幕完全遮住了手机的正面,这就对天线的设计提出了非常非常高的要求。

具体来说,由于5G毫米波非常短,来自金属的干扰会更加严重,至少需要1.5mm的净空区。而5G手机被人手和人脸遮挡时,信号会开始寻找最低误码率频段。所以在设计5G终端时候,天线安装的位置一开始就要合适,使其易于寻找最合适的频段。

除了接收性能外,还需考虑空间覆盖度与散热的问题。越广的空间覆盖度越有利于用户的无线体验,但越广的空间覆盖度,往往要牺牲手机外观设计。此外,为防止散热不当对天线系统造成损坏,在整机设计时也要注重材质的把控。

5G天线设计虽然困难重重,但不是没有解决方案。业内普遍看好天线阵列(多天线单元)设计,即将许多相同的单天线按照一定的规律排列组成的天线系统。

当下5G毫米波天线阵列一般是基于相控阵的方式,具体实现方式又可以分为AoB (Antenna on Board,即天线阵列位于系统主板上)、AiP (Antenna in Package,即天线阵列位于芯片的封装内),与AiM (Antenna in Module,即天线阵列与RFIC形成一模组)三种。目前AiM方式为业界普遍接受。

5G所使用的新频段、新技术都将为手机天线的设计与制造带来一系列新挑战,而手机天线的变化又将反过来影响5G手机的整体设计。与此同时,手机终端的小型化、智能化,以及窄边框、金属边框的流行,都将成为5G天线设计的难点。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • iPhone
    +关注

    关注

    28

    文章

    13176

    浏览量

    200169
  • 5G手机
    +关注

    关注

    7

    文章

    1347

    浏览量

    50245

原文标题:从苹果自研天线看5G手机天线设计到底有多难

文章出处:【微信号:mwrfnet,微信公众号:微波射频网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    5G 外置天线

    ,以及高效率,这意味着您可以依靠致和快速的连接。我们的5G圆顶天线具有IP67等级,以确保卓越的耐用性和可靠的信号传输,使其成为耐受崎岖地形和恶劣户外环境应用的完美解决方案。此外,我
    发表于 01-02 11:58

    ARM和DSP到底有什么区别?

    现在在学ARM,想知道ARM和DSP到底有什么区别?为什么有些地方用DSP有些用ARM
    发表于 10-19 07:20

    如果给路由器天线换成5G信号天线会怎么样?

    如图所示,如果把路由器天线切换成5G信号天线会怎样?技术上可行吗?信号和支持范围会不会增强? 我想自己做
    发表于 06-19 09:44

    内置天线和外置天线信号一个更强?

    但是,很明显,内置天线并不影响我们日常接收信号和电话。除了手机,电视机也是例子。从目前的趋势来看,内置
    发表于 05-09 14:30

    5G天线和4g天线能通用吗?何区别?

    。   5G天线频段更长,无线传输速度更快,抗干扰能力更强。其传输速度虽快,但传输距离有限,穿透力较弱。这两种天线各有千秋,我们选择合适自己的就好啦!   5G频段的宽信道宽度,
    发表于 05-09 14:26

    WIFI双频天线和单频天线哪个好?

      2.4GHz和5GHz双频天线的WiFi信号差别较大,般情况下2.4GHz和5GHz的双频天线
    发表于 05-09 14:19

    5G该如何进行地铁覆盖呢?

      5G,已经悄然在编织起张天罗地网,试图捕捉每一个5G手机的连接请求,为手机背后那些多姿多彩
    发表于 05-06 15:01

    5G毫米波峰值速率计算

    MIMO(多入多出)。   由下图可见,不同频段下,手机的能力是不样的。在中国5G的主流频段3.5GHz或者2.6GHz上,手机可支持4路接收,2路发射;毫米波频段次之,能支持2路接
    发表于 05-06 14:34

    5G NR信号的解调分析

    5G NR信号足够的理解。   本文主要整理了5G NR 信号解调分析中关键参数的设置,包括这些参数在3GPP物理层协议中的定义,为什么
    发表于 05-06 11:49

    5G使用哪种类型的基站天线

    ,但是预计5G天线的顺应性区域的大小将与使用类似发射器功率的其他移动技术相似。   移动网络天线通常是定向的。顺应性区域在天线的前面延伸,上方和下方都有
    发表于 05-05 11:51

    5G是如何实现更高精度的定位呢?

      4G时代涌现出了滴滴打车,共享单车等基于用户地理位置的新应用形态;“5G定位”作为新的方向,物联网和智能化对基于其位置服务提出了更高的要求,对于解决室外到室内的“最后
    发表于 05-05 10:53

    5G毫米波哪些优势?

    设计和部署上有空间优势,非常适合与波束赋形技术相结合,增强性能并降低干扰。在典型天线阵列配置下,假设基站256天线阵子,5G毫米波能够获
    发表于 05-05 10:49

    5G干扰哪几种类型?

      第类是同频干扰,即5G频率和卫星频率完全重合,地面5G信号比微弱的卫星信号功率大数千倍,对卫星信号
    发表于 05-05 10:46

    如何使用HFSS设计5G天线阵列?

      仿真步骤如下:   步骤 1:使用 HFSS 天线工具包查找天线单元模板   为 5G 应用创建天线阵列的第步是使用 HFSS
    发表于 05-05 09:58

    5G网络架构,5G中的SDR和SDN是什么?

    都有BBU,并通过BBU直接连到核心网。而在5G网络中,接入网不再是由BBU、RRU、天线这些东西组成了。而是被重构为以下3功能实体:
    发表于 05-05 09:48