

WEBENCH® Clock Architect

Project Report
Project: 4407031/1 Project 1 - [CDCM6208V1]

Created: 7/15/15 6:16:41 PM

Block Diagram

System Specification and Parameters

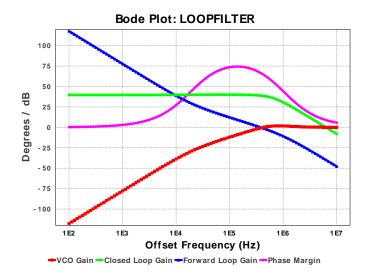
Fixed Outputs

req (MHz)	Format	Count
4	Any	1
7	Any	1
5	Any	1
	7	4 Any 7 Any

Options

Name	Design Value
Automatically Select	No
Input Frequencies	

Properties

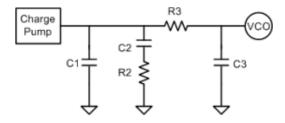

Name	Design Value	
External Sou	urces none	
Total BOM C	Cost \$5.2	
Total Curren	nt 137.5 mA	
Total Footpri	rint 49.0 mm²	

User ID = 4407031 Design Id = 13 Device = CDCM6208V1 Created = 7/15/15 6:16:41 PM

WEBENCH ® Clock Design Report

Loop Filter: CDCM6208V1 LOOPFILTER

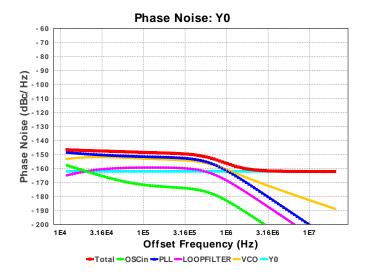
Preferences


Name	Design Value
Filter Type	Passive
Filter Order	3rd Order
Op Amp Gain	1.00
Charge Pump Gain	2.50 mA
VCO Gain	185.00 MHz/V
VCO Input Capacitance	0.00 pF
VCO Frequency	2400.00 MHz
Phase Det. Frequency	25.00 MHz

Parameters

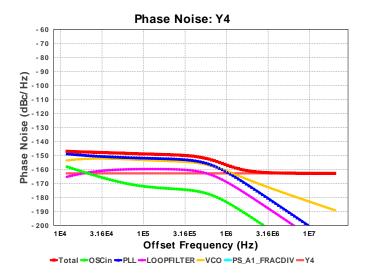
Name	Design Value	Forced	Actual Value	
Loop Bandwidth	423.625 kHz	N	382.114 kHz	
Phase Margin	65.00 deg	N	66.447 deg	
T3/T1Ratio	50.00 %	N	0.00 %	
T4/T3Ratio	0.00 %	N	0.00 %	
Gamma	9.50	N	7.626	

Loop Filter Components


Name	Target Value	Fixed	Forced	
C1	Open	N	N	
C2	15.00 nF	N	N	
C3	0.242 nF	Υ	N	
C4	Open	Υ	N	
R2	0.56 kohms	N	N	
R3	0.10 kohms	Υ	N	

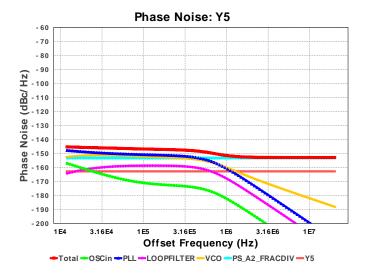
Output Block: CDCM6208V1 Y0 as LVDS output, 25.0 MHz

Integrated Noise Info 12000.0 - 2.0E7


Name	Design Value
Calculated Area	0.00
Equivalent Flat Noise	-159.896 dBc/Hz
RMS Jitter	407.37 fs
RMS Phase Error (deg)	0.004 deg
RMS Phase Error	0.064 mrad
EVM	0.006%
SNR	83.878 dB
Spur	-86.878 dBc
Jitter (Pk-Pk)	2904.75 fs
Jitter (Cycle to Cycle Pk)	5809.50 fs
Jitter (Cycle to Cycle RMS)	576.108 fs
A/D ENOB	13.647 bits
TIE (Time Interval Error)	-0.286
UI (Unit Interval)	0.00
Lower Integration Limit	12.00 kHz
Upper Integration Limit	20.00 MHz

Output Block: CDCM6208V1 Y4 as LVCMOS output, 24.0 MHz

Integrated Noise Info 12000.0 - 2.0E7


Name	Design Value
Calculated Area	0.00
Equivalent Flat Noise	-160.393 dBc/Hz
RMS Jitter	400.732 fs
RMS Phase Error (deg)	0.003 deg
RMS Phase Error	0.06 mrad
EVM	0.006%
SNR	84.375 dB
Spur	-87.375 dBc
Jitter (Pk-Pk)	2857.421 fs
Jitter (Cycle to Cycle Pk)	5714.841 fs
Jitter (Cycle to Cycle RMS)	566.721 fs
A/D ENOB	13.73 bits
TIE (Time Interval Error)	-0.286
UI (Unit Interval)	0.00
Lower Integration Limit	12.00 kHz
Upper Integration Limit	20.00 MHz

Output Block: CDCM6208V1 Y5 as LVCMOS output, 26+23301686/23301689 MHz

Integrated Noise Info 12000.0 - 2.0E7

Name	Design Value
Calculated Area	0.00
Equivalent Flat Noise	-152.499 dBc/Hz
RMS Jitter	883.868 fs
RMS Phase Error (deg)	0.009 deg
RMS Phase Error	0.15 mrad
EVM	0.015%
SNR	76.481 dB
Spur	-79.481 dBc
Jitter (Pk-Pk)	6302.418 fs
Jitter (Cycle to Cycle Pk)	12604.836 fs
Jitter (Cycle to Cycle RMS)	1249.978 fs
A/D ENOB	12.419 bits
TIE (Time Interval Error)	-0.286
UI (Unit Interval)	0.00
Lower Integration Limit	12.00 kHz
Upper Integration Limit	20.00 MHz

Texas Instruments' WEBENCH simulation tools attempt to recreate the performance of a substantially equivalent physical implementation of the design. Simulations are created using Texas Instruments' published specifications as well as the published specifications of other device manufacturers. While Texas Instruments does update this information periodically, this information may not be current at the time the simulation is built. Texas Instruments does not warrant the accuracy or completeness of the specifications or any information contained therein. Texas Instruments does not warrant that any designs or recommended parts will meet the specifications you entered, will be suitable for your application or fit for any particular purpose, or will operate as shown in the simulation in a physical implementation. Texas Instruments does not warrant that the designs are production worthy.

You should completely validate and test your design implementation to confirm the system functionality for your application prior to production.

Use of Texas Instruments' WEBENCH simulation tools is subject to Texas Instruments' Site Terms and Conditions of Use. Prototype boards based on WEBENCH created designs are provided AS IS without warranty of any kind for evaluation and testing purposes and are subject to the terms of the Evaluation License Agreement.