0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一支团队成功对果蝇的完整大脑进行了成像,清晰度达到了纳米级!

mK5P_AItists 来源:lq 2019-01-21 13:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

摘要:在最新出版的《科学》杂志上,由麻省理工学院(MIT)和霍华德·休斯医学研究所(HHMI)的科学家们领衔的一支团队,成功对果蝇的完整大脑进行了成像,清晰度达到了纳米级!

在最新出版的《科学》杂志上,由麻省理工学院(MIT)和霍华德·休斯医学研究所(HHMI)的科学家们领衔的一支团队,成功对果蝇的完整大脑进行了成像,清晰度达到了纳米级!这让我们能够看清大脑中,不同的神经细胞,乃至蛋白质在空间上的相对分布,对基础科研有着极为重要的意义。

这一重磅研究,也登上了本期《科学》的封面。

婴儿尿布与大脑研究

本研究的通讯作者之一是MIT的知名科学家Edward S. Boyden教授。他最初因在光遗传学上的研究而闻名于世,最近几年则在大脑成像领域有着诸多突破性的贡献。2015年,他获得了有“科学界奥斯卡”之称的“科学突破奖”(Breakthrough Prize)。2018年,他也获得了有诺贝尔风向标称号的盖尔德纳奖。

▲Edward S. Boyden教授是本研究的通讯作者之一(图片来源:Edward S. Boyden教授课题组)

在2015年左右,Boyden教授团队向解析大脑的高清结构发起了冲锋,目标是理清大脑在细胞、乃至蛋白层面上如何进行组合。为了实现这一目标,科学家们开发了一种看起来很有趣的研究方法:他们首先往大脑组织样本中注射一种胶状物质,随后让这些凝胶吸水膨胀,把大脑撑开。

从原理上看,这和婴儿尿布中的材料吸水膨胀,有着异曲同工之妙。

这种看起来简单的方法,在解析大脑结构中扮演了重要的角色。在长、宽、高的维度上膨胀扩大2倍,整个体积就会扩大8倍。由于膨胀后的大脑组织更为松散,对其进行显微观察就成为了可能。更关键的是,大脑样本中的这些神经细胞,相对位置被凝胶所固定,并不会发生变化。

▲果蝇大脑的扩大过程(图片来源:参考资料[1])

正是因为这一突破,针对特定的大脑细胞或小型大脑区域,我们已经获得了不少“高清地图”。

两种显微技术的合力

在体积较小的大脑样本中取得的成功,并不一定能被复制到大型脑组织里。这是因为样本的体积越大,就越难对深埋其中的特定部分进行成像。如果单纯为了“点亮”而增强光源,还会破坏用于做标记的荧光蛋白。可以说,这是一个两难。

此外,大型脑组织在膨胀扩大之后,如何对整个结构进行快速的扫描成像,也就成了一个难题。“我们需要能够快速成像,不会带来太多光褪色(photobleaching)效应的显微镜”,本研究的共同第一作者Ruixuan Gao博士说道。而他们知道,HHMI的Eric Betzig教授课题组中,就有这么一台高级的显微镜。

▲本研究的共同第一作者Ruixuan Gao博士(图片来源:Edward S. Boyden教授课题组)

Betzig教授的显微镜叫做“晶格层光显微镜”(lattice light-sheet microscope)。它每次只会照亮超级薄的一层样本,将对样本的损害降到了最低。此外,它也能快速对样本进行成像,这正是研究人员们所需要的技术。

顺便一提,由于在显微成像技术上的突破,Betzig教授曾获得2014年的诺贝尔化学奖。

▲Betzig教授是2014年诺贝尔化学奖得主之一(图片来源:诺贝尔奖官方网站)

这名诺奖得主起初并不相信他的显微镜能提供多少帮助,但他依然大度地邀请研究人员们前去尝试。

Ruixuan Gao博士与另一名共同一作Shoh Asano博士带去了一些经过膨胀扩大的小鼠大脑组织,在晶格层光显微镜下进行观察。通过结合“扩大显微技术”和“晶格层光显微技术”,他们看到了神经元上的许多树突棘结构。这种微小的结构看起来就像是蘑菇,有着庞大的头部,以及细长的根部。过去,树突棘的成像一直是一个挑战。然而在两种显微技术的合力下,研究人员们连“最细小的根部”都可以看到。

▲研究人员们看到了树突棘的“森林”(图片来源:参考资料[1])

“我简直不敢相信数据的质量,” Betzig教授说道:“用一根羽毛,你就可以把(震惊的)我推倒。”

畅游果蝇的大脑

在惊人的图像质量面前,两支科研团队迅速达成合作。在两年多的时间里,Ruixuan Gao博士与Shoh Asano博士,以及其他生物学家,显微镜专家,以及计算机专家一道,拍摄了大量的图片,并对其进行分析。

“我们就像是复仇者联盟。” Ruixuan Gao博士这样评论他们的合作关系。

▲看清大脑结构,一直是科研人员们的梦想(图片来源:参考资料[1])

这些研究带来的最大亮点之一,就是对完整果蝇大脑的成像分析。从每个果蝇大脑中,科学家们都获得了大约50000个立体图像。随后,计算机就像是做三维拼图一般,把这些立体图像拼成一个完整的果蝇大脑。

研究人员们说,他们研究了超过1500个树突棘,观察了保护神经细胞的髓鞘,标出了所有的多巴胺能神经元,并数清了整个果蝇大脑中存在的突触。

这些图像的清晰度高达60纳米,成像过程不超过3天。随着效率不断提高,将来,我们有望在一天之内就对10个果蝇大脑进行立体成像。

“我们能用极快的速度,对非常大体积的样本进行分析,获得高清的图像。”Boyden教授说道。

这一研究为神经科学带来了极为重要的研究工具。它让我们可以理解不同的神经环路如何组成,性别对大脑有怎样的影响,疾病又会怎样破坏大脑。

对研究神经科学的生物学家来说,这可能是最好的时代。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 成像技术
    +关注

    关注

    4

    文章

    306

    浏览量

    32151
  • 图像
    +关注

    关注

    2

    文章

    1095

    浏览量

    42157
  • 神经元
    +关注

    关注

    1

    文章

    369

    浏览量

    19110

原文标题:今日《科学》封面:纳米级清晰度看大脑是怎样一种体验?

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何用FIB技术定位纳米级缺陷?关键操作与案例解析

    FIB技术以其独特的纳米级加工能力,在半导体芯片、材料科学等领域展现出精准切割、成像和分析的强大功能。样品制备样品制备是FIB测试的首要环节,其质量直接影响最终测试结果的准确性。对于不同类型的样品
    的头像 发表于 11-26 17:06 451次阅读
    如何用FIB技术定位<b class='flag-5'>纳米级</b>缺陷?关键操作与案例解析

    中国团队成功创制亚纳米级关键材料

    据科技日报报道;安徽师范大学传来好消息,安徽师范大学校长熊宇杰教授联合中国科学技术大学相关科研团队,在温和条件下利用激光辐照所激发的等离激元光热效应和热电子效应,成功创制出亚纳米级高熵合金,这
    的头像 发表于 10-20 15:58 485次阅读

    毫米行程柔性驱动压电纳米定位台:超大行程,纳米级精度

    至1mm,同时延续纳米级精度与高稳定性,为更大范围的精密应用提供全新解决方案。 、P15.XY1000S/K:超大行程与高精度的双重突破 作为P15系列的大行程新成员,P15.XY1000S/K在保留系列核心优势的基础上,针对大范围精密运动需求做了关键升级,核心亮点集中
    的头像 发表于 10-16 15:47 194次阅读
    毫米行程柔性驱动压电<b class='flag-5'>纳米</b>定位台:超大行程,<b class='flag-5'>纳米级</b>精度

    摄像头清晰度的隐形守护者:无硅油导热垫SF1280如何解决光学模组散热难题?

    的SF1280系列无硅导热垫片,专为对有机硅敏感的应用场景而设计,具有多项卓越特性: 核心优势 l 无硅氧烷挥发:从源头上杜绝了硅油挥发物对摄像头镜片和电路的污染,保障长期使用下的成像清晰度和电路可靠性。l
    发表于 09-01 11:06

    共聚焦显微镜原理:纳米级成像技术的关键

    在微观世界中,细节决定成败。共聚焦显微镜技术,作为项突破性的成像技术,正引领着纳米级成像的新纪元。它不仅提供了前所未有的高分辨率和对比
    的头像 发表于 08-05 17:55 1232次阅读
    共聚焦显微镜原理:<b class='flag-5'>纳米级</b><b class='flag-5'>成像</b>技术的关键

    大气能见监测仪:洞察大气 “清晰度” 的科技之眼

    大气能见监测仪:洞察大气 “清晰度” 的科技之眼 柏峰【BF-NJD】在日常生活中,大气能见时刻影响着我们的出行、生产活动以及对周围环境的感知。无论是驾车行驶在高速公路上,还是飞机翱翔于蓝天,亦或是我们简单地欣赏远处的风景,
    的头像 发表于 07-22 11:10 386次阅读
    大气能见<b class='flag-5'>度</b>监测仪:洞察大气 “<b class='flag-5'>清晰度</b>” 的科技之眼

    纳米级检测!潜望式棱镜的“检测密码”,决定手机远景清晰度

    手机变薄了,远景拍摄却更清晰了?全靠这个 “躺平” 的零件在发力!优可测白光干涉仪如何让手机清晰拍摄远景照片?
    的头像 发表于 07-21 17:33 779次阅读
    亚<b class='flag-5'>纳米级</b>检测!潜望式棱镜的“检测密码”,决定手机远景<b class='flag-5'>清晰度</b>

    Keithley 2450数字源表纳米级材料测试的精密利器

    、操作复杂性高等问题亟待解决。美国吉时利(Keithley)推出的2450数字源表,凭借高精度、多功能及智能化设计,为纳米级材料测试提供了突破性解决方案,成为科研与工业领域的精密利器。   、核心技术特性:精密测量的基石
    的头像 发表于 07-09 14:40 420次阅读
    Keithley 2450数字源表<b class='flag-5'>纳米级</b>材料测试的精密利器

    滚珠导轨:电子制造“纳米级”精度的运动基石

    在电子制造与半导体设备追求“微米工艺、纳米级控制”的赛道上,滚珠导轨凭借高刚性、低摩擦与高洁净特性,成为精密运动系统的核心载体。
    的头像 发表于 05-29 17:46 499次阅读
    滚珠导轨:电子制造“<b class='flag-5'>纳米级</b>”精度的运动基石

    超声波指纹模组灵敏飞升!低温纳米烧结银浆立大功

    纳米级特性,展现出了卓越的性能优势,成为了指纹模组材料领域的颗新星,有望引领指纹模组进入个全新的发展阶段 。 探秘低温纳米烧结银浆 微观世界里的神奇银浆 低温
    发表于 05-22 10:26

    优可测白光干涉仪AM系列:量化管控纳米级粗糙,位移传感器关键零件寿命提升50%

    位移传感器模组的编码盘,其粗糙及码道的刻蚀深度和宽度,会对性能带来关键性影响。优可测白光干涉仪精确测量表面粗糙以及刻蚀形貌尺寸,精度最高可达亚纳米级,解决产品工艺特性以及量化管控。
    的头像 发表于 05-21 13:00 778次阅读
    优可测白光干涉仪AM系列:量化管控<b class='flag-5'>纳米级</b>粗糙<b class='flag-5'>度</b>,位移传感器关键零件寿命提升50%

    如何提高uvc相机的清晰度

    在使用小核的uvc例程时,修改了编码的分辨率设置为2592x1944,通过uvc连接到相机时看到的画面比较模糊,如何提高清晰度呢? 配置如下所示左边为大核编码,右边为uvc配置 下面是canaan-camera.sh新增的分辨率 下面是uvc下2592*1944的图片 下面是使用大核下面的编码图像
    发表于 04-28 06:33

    纳米级形貌快速测量,优可测白光干涉仪助力摩擦磨损学科发展

    研究摩擦学,能带来什么价值?从摩擦磨损到亚纳米级精度,白光干涉仪如何参与摩擦学发展?
    的头像 发表于 04-21 12:02 1074次阅读
    <b class='flag-5'>纳米级</b>形貌快速测量,优可测白光干涉仪助力摩擦磨损学科发展

    X射线成像系统:Kirkpatrick-Baez镜和单光栅干涉仪

    聚焦镜 Kirkpatrick-Baez 镜将掠入射X射线场聚焦到纳米级的点上。本用例展示了Kirkpatrick-Baez镜的分析设计过程和焦点区域的衍射图样。 用于X射线成像的单光栅干涉仪
    发表于 03-21 09:22

    VirtualLab Fusion应用:用于X射线束的掠入射聚焦镜

    Radiation 27.5 (2020): 1307-1319]。使用两个物理上分离的椭圆镜聚焦光束的两个维度即可完成聚焦。系统可以将入射的X射线聚焦到纳米级的光斑尺寸。该系统在
    发表于 03-21 09:17