关键字:开关电源设计小知识
开关电源和线性电源的区别,各用在什么场合?
线性电源的调整管工作在放大状态,因而发热量大,效率低(35%左右),需要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。开关电源的调整管工作在饱和和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。但开关电源输出的直流上面会叠加较大的纹波(50mV at 5V output typical),在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。相对而言线性电源就没有以上缺陷,它的纹波可以做的很小(5mV以下)。
对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是开关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦。
对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。另外当电路中需要作隔离的时候现在多数用DC-DC来做对隔离部分供电(DC-DC从其工作原理上来说就是开关电源)。还有,开关电源中用到的高频变压器可能绕制起来比较麻烦。
开关电源介绍
开关电源设计
1 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源产品可靠性设计的重要性。
2 开关电源电气可靠性设计
2.1 供电方式的选择
集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式供电系统可以满足高可靠性设备的要求。
2.2 电路拓扑的选择
开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这两类电路拓扑。
2.3 控制策略的选择
在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压控制型小得多。生产实践表明电流控制型的50W开关电源的输出纹波在25mV左右,远优于电压控制型。
硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振原理,使开关器件在零电压或零电流状态下通断,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,这种应用软开关技术的变换器综合了PWM变换器和谐振变换器两者的优点,接近理想的特性,如低开关损耗、恒频控制、合适的储能元件尺寸、较宽的控制范围及负载范围,但是此项技术主要应用于大功率电源,中小功率电源中仍以PWM技术为主。
2.4 元器件的选用
因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。元器件的失效主要集中在以下四个方面:
(1)制造质量问题
质量问题造成的失效与工作应力无关。质量不合格的可以通过严格的检验加以剔除,在工程应用时应选用定点生产厂家的成熟产品,不允许使用没有经过认证的产品。
(2)元器件可靠性问题
元器件可靠性问题即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别是元器件的失效率取决于工作应力水平。在一定的应力水平下,元器件的失效率会大大下降。为剔除不符合使用要求的元器件,包括电参数不合格、密封性能不合格、外观不合格、稳定性差、早期失效等,应进行筛选试验,这是一种非破坏性试验。通过筛选可使元器件失效率降低1~2个数量级,当然筛选试验代价(时间与费用)很大,但综合维修、后勤保障、整架联试等还是合算的,研制周期也不会延长。电源设备主要元器件的筛选试验一般要求:
①电阻在室温下按技术条件进行100%测试,剔除不合格品。
②普通电容器在室温下按技术条件进行100%测试,剔除不合格品。
③接插件按技术条件抽样检测各种参数。
④半导体器件按以下程序进行筛选:
目检→初测→高温贮存→高低温冲击→电功率老化→高温测试→低温测试→常温测试
筛选结束后应计算剔除率Q
Q=(n / N)×100%
式中:N——受试样品总数;
n——被剔除的样品数;
如果Q超过标准规定的上限值,则本批元器件全部不准上机,并按有关规定处理。
在符合标准规定时,则将筛选合格的元器件打漆点标注,然后入专用库房供装机使用。
(3)设计问题
首先是恰当地选用合适的元器件:
①尽量选用硅半导体器件,少用或不用锗半导体器件。
②多采用集成电路,减少分立器件的数目。
③开关管选用MOSFET能简化驱动电路,减少损耗。
④输出整流管尽量采用具有软恢复特性的二极管。
⑤应选择金属封装、陶瓷封装、玻璃封装的器件。禁止选用塑料封装的器件。
⑥集成电路必须是一类品或者是符合MIL-M-38510、MIL-S-19500标准B-1以上质量等级的军品。
⑦设计时尽量少用继电器,确有必要时应选用接触良好的密封继电器。
⑧原则上不选用电位器,必须保留的应进行固封处理。
⑨吸收电容器与开关管和输出整流管的距离应当很近,因流过高频电流,故易升温,所以要求这些电容器具有高频低损耗和耐高温的特性。
在潮湿和盐雾环境下,铝电解电容会发生外壳腐蚀、容量漂移、漏电流增大等情况,所以在舰船和潮湿环境,最好不要用铝电解电容。由于受空间粒子轰击时,电解质会分解,所以铝电解电容也不适用于航天电子设备的电源中。
钽电解电容温度和频率特性较好,耐高低温,储存时间长,性能稳定可靠,但钽电解电容较重、容积比低、不耐反压、高压品种(>125V)较少、价格昂贵。
关于降额设计:电子元器件的基本失效率取决于工作应力(包括电、温度、振动、冲击、频率、速度、碰撞等)。除个别低应力失效的元器件外,其它均表现为工作应力越高,失效率越高的特性。为了使元器件的失效率降低,所以在电路设计时要进行降额设计。降额程度,除可靠性外还需考虑体积、重量、成本等因素。不同的元器件降额标准亦不同,实践表明,大部分电子元器件的基本失效率取决于电应力和温度,因而降额也主要是控制这两种应力,以下为开关电源常用元器件的降额系数:
①电阻的功率降额系数在0.1~0.5之间。
②二极管的功率降额系数在0.4以下,反向耐压在0.5以下。
③发光二极管.
1 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源产品可靠性设计的重要性。
2 开关电源电气可靠性设计
2.1 供电方式的选择
集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生故障时可能导致系统瘫痪。分布式供电系统因供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,节约能源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。所以采用分布式供电系统可以满足高可靠性设备的要求。
2.2 电路拓扑的选择
开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。单端正激式、单端反激式、双单端正激式、推挽式的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型。在推挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平衡能力,所以就不会出现这个问题。双管正激式和半桥电路开关管的承压仅为电源的最大输入电压,即使按60%降额使用,选用开关管也比较容易。在高可靠性工程上一般选用这两类电路拓扑。
2.3 控制策略的选择
在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优点:逐周期电流限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比电压控制型小得多。生产实践表明电流控制型的50W开关电源的输出纹波在25mV左右,远优于电压控制型。
硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振原理,使开关器件在零电压或零电流状态下通断,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,这种应用软开关技术的变换器综合了PWM变换器和谐振变换器两者的优点,接近理想的特性,如低开关损耗、恒频控制、合适的储能元件尺寸、较宽的控制范围及负载范围,但是此项技术主要应用于大功率电源,中小功率电源中仍以PWM技术为主。
2.4 元器件的选用
因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。元器件的失效主要集中在以下四个方面:
(1)制造质量问题
质量问题造成的失效与工作应力无关。质量不合格的可以通过严格的检验加以剔除,在工程应用时应选用定点生产厂家的成熟产品,不允许使用没有经过认证的产品。
(2)元器件可靠性问题
元器件可靠性问题即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别是元器件的失效率取决于工作应力水平。在一定的应力水平下,元器件的失效率会大大下降。为剔除不符合使用要求的元器件,包括电参数不合格、密封性能不合格、外观不合格、稳定性差、早期失效等,应进行筛选试验,这是一种非破坏性试验。通过筛选可使元器件失效率降低1~2个数量级,当然筛选试验代价(时间与费用)很大,但综合维修、后勤保障、整架联试等还是合算的,研制周期也不会延长。电源设备主要元器件的筛选试验一般要求:
①电阻在室温下按技术条件进行100%测试,剔除不合格品。
②普通电容器在室温下按技术条件进行100%测试,剔除不合格品。
③接插件按技术条件抽样检测各种参数。
④半导体器件按以下程序进行筛选:
目检→初测→高温贮存→高低温冲击→电功率老化→高温测试→低温测试→常温测试
筛选结束后应计算剔除率Q
Q=(n / N)×100%
式中:N——受试样品总数;
n——被剔除的样品数;
如果Q超过标准规定的上限值,则本批元器件全部不准上机,并按有关规定处理。
在符合标准规定时,则将筛选合格的元器件打漆点标注,然后入专用库房供装机使用。
(3)设计问题
首先是恰当地选用合适的元器件:
①尽量选用硅半导体器件,少用或不用锗半导体器件。
②多采用集成电路,减少分立器件的数目。
③开关管选用MOSFET能简化驱动电路,减少损耗。
④输出整流管尽量采用具有软恢复特性的二极管。
⑤应选择金属封装、陶瓷封装、玻璃封装的器件。禁止选用塑料封装的器件。
⑥集成电路必须是一类品或者是符合MIL-M-38510、MIL-S-19500标准B-1以上质量等级的军品。
⑦设计时尽量少用继电器,确有必要时应选用接触良好的密封继电器。
⑧原则上不选用电位器,必须保留的应进行固封处理。
⑨吸收电容器与开关管和输出整流管的距离应当很近,因流过高频电流,故易升温,所以要求这些电容器具有高频低损耗和耐高温的特性。
在潮湿和盐雾环境下,铝电解电容会发生外壳腐蚀、容量漂移、漏电流增大等情况,所以在舰船和潮湿环境,最好不要用铝电解电容。由于受空间粒子轰击时,电解质会分解,所以铝电解电容也不适用于航天电子设备的电源中。
钽电解电容温度和频率特性较好,耐高低温,储存时间长,性能稳定可靠,但钽电解电容较重、容积比低、不耐反压、高压品种(>125V)较少、价格昂贵。
关于降额设计:电子元器件的基本失效率取决于工作应力(包括电、温度、振动、冲击、频率、速度、碰撞等)。除个别低应力失效的元器件外,其它均表现为工作应力越高,失效率越高的特性。为了使元器件的失效率降低,所以在电路设计时要进行降额设计。降额程度,除可靠性外还需考虑体积、重量、成本等因素。不同的元器件降额标准亦不同,实践表明,大部分电子元器件的基本失效率取决于电应力和温度,因而降额也主要是控制这两种应力,以下为开关电源常用元器件的降额系数:
①电阻的功率降额系数在0.1~0.5之间。
②二极管的功率降额系数在0.4以下,反向耐压在0.5以下。
③发光二极管.
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
发布评论请先 登录
相关推荐
热点推荐
高效开关电源拓扑的利器:NCP4307同步整流驱动器
在开关电源(SMPS)的设计领域,同步整流技术的应用对于提高电源效率至关重要。而onsemi推出的NCP4307,作为一款高性能的同步整流MOSFET驱动器,为SMPS设计带来了诸多优
安森美SMPS矩阵方案满足各类电源管理需求
。此外,还需在不同工况下选择最适配的拓扑结构。本系统解决方案指南将介绍开关电源的基础知识,以及安森美(onsemi)提供的特色产品与解决方案。 框图 - SMPS 框图 - SMPS
【精选资料】开关电源、正弦波逆变器、直流无刷电机原理图资料分享
1、开关电源维修从入门到精通(完整版)详细地介绍了生活中最常见的4种开关电源(台式计算机中的ATX电源、电动车充电器、手机或平板电脑充电器、LCD液晶显示器中的电源)的原理和维修
开关电源的设计与研究
开关电源的设计与研究,PPT课件,还不错的技术资料
目录
一:PDN系统简介
二:开关电源概述
三:开关电源的设计
四:案例分析
纯分享贴,有需要可以直接下载附件获取完整资料!
(如果内容有帮助可以关注、点赞、评论支持一
发表于 05-13 15:09
开关电源的理论知识(电子讲义)
内容目录
1:开发一个开关电源产品所需要的技能和专业理论知识
2:开发一个开关电源产品所需要进行的各种优化和折中
3:保证开关电源产品一次开发成功所需具备的工程素质
纯分享贴
发表于 04-24 17:14
新型开关电源典型电路设计与应用(完整版)
本文共分8章,分别介绍了开关电源基础知识、开关电源设计理论、开关电源变换电路结构设计与应用、新型开关电源的设计与应用、经济实用
发表于 04-24 16:19
MDD肖特基二极管在开关电源(SMPS)中的应用:如何提升转换效率?
——FAE视角下的效率优化关键器件在现代电子系统中,开关电源(SMPS)以其高效率和小型化优势成为主流电源解决方案。而在SMPS设计中,MDD肖特基二极管作为关键整流器件,因其优异的正
反激式开关电源电路的基础知识
在硬件面试经典中的第 86 题中提到的反激式开关电源,是通过开关通断将交流转变成直流的 AD-DC 开关电源的一种,并且反激式开关电源是由 BUCK-BOOST 电路演变而来,所以博客
MDD快恢复二极管在开关电源中的应用:如何提高转换效率?
开关电源(SMPS)是现代电子设备中不可或缺的供电方式,其核心特点是高效能、体积小、重量轻。在高频工作的开关电源中,整流二极管的反向恢复特性直接影响能量损耗和转换效率。相比普通整流二极管,快恢复
开关电源设计资料大全(建议收藏)
今天要给大家分享一些开关电源方面的资料,里面都是开关电源相关的技术知识,有入门基础,TI培训,变压器,EMC等相关知识,如果工作之余时间比较充裕的条件下,可以多学习下。
本资料可供从
发表于 03-11 13:45
精通开关电源设计(中文)[美 马尼克塔拉]
本书介绍了开关电源的基本原理,DC-DC变换器设计与磁学基础,离线式变换设计与磁学技术,拓步FAQ,开关损耗和导通损耗,反馈环路分析及稳定性,EMI基础从麦克斯韦方程到CISPR标准,传导EMI限值及测量,实际的电源输入EMI滤
发表于 03-08 16:21
基站开关电源的管理及维护
基站开关电源的管理及维护 导读 本文重点介绍了开关电源的“类型及使用场景、配置原则及算法、日常管理及维护”三部分内容。 第一部分 类型及使用场景 1.组合式开关电源 2.嵌入式开关电源

开关电源设计小知识,SMPS Design Tips
评论